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Abstract

A set of data is obtained for all the nine components of the velocity
gradient tensor A;; = du;/0z; along with all the three velocity com-
ponents in a field experiment at the Reynolds numbers (based on the
Taylor microscale) Rey ~ 10*. The data is used in order to demon-
strate that the small scales - both from the inertial range and from
the dissipation range — are not decoupled from the energy containing
range even at Rey as large as 10%. It is argued that this direct interac-
tion/coupling of large and small scales seems to be a generic property
of all turbulent flows and the main reason for small scale intermittency,
non-universality, and quite modest manifestations of scaling.

1 Introductory notes, motivation

There is no concensus on the meaning of the term intermiliency even in the
community working in the field of fluid turbulence. We shall use it in con-
nection with the small scale (SS) — another not well defined term - structure
of turbulent flows and ‘misbehaviours’ of SS. We will understand the term
‘scale’ in it simplest geometrical meaning in physical space and/or use the
field of velocity derivatives A;; = Ou;/0x; as the one objectively (i.e. de-
composition/representation independent) representing the small scales, e.g.
dissipation happens to occur on s? = s;s;;, where s;; = %(A” + Aj;) and
vorticity is known as a basic SS quantity (Tsinober (1999b)).

There are several reasons for the SS intermittency in turbulent flows (see,
e. g. Sreenivasan and Antonia (1997), Tsinober (1993, 1998), Yeung et
al.(1995), Warhaft (2000) and references therein).

Our concern in this communication is with the direct coupling between the
large and small scales. The evidence for such a coupling is quite massive
(see references in Sreenivasan and Antonia (1997), Tsinober (1993), (1998),
Warhaft (2000)). In particular, it goes back to the fact that the skewness
-of the derivative of temperature fluctuations is not small and is of order 1
(Stewart, (1969); Gibson et al. (1970)). For example, in the experiments of
Gibson et al. (1970) it was about —0.5, in conditions as in our experiment
decsribed below, whereas for a locally isotropic flow it should be close to
zero®. Similar observations were made in laboratory flows at Rey = 500 (see

1Corresponding author
2For additional references see Sreenivasan and Antonia (1997), also Figure 7 therein
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Warhaft, 2000 and references therein). Quite recently similar observations
were made for the velocity derivatives in the direction of the shear (Garg and
Warhaft (1998) and references therein).

An important observation was made by Praskovsky et al. (1993) (see
also Sreenivasan and Dhruva (1998)). The specific feature of these works
is rather large (Taylor microscale) Reynolds number Re, ~ 10%. In spite
of such large Reynolds number there is clear evidence of strong coupling
between large and small scales, which accoring to ‘common wisdom’ should
not exist. This fact only calls for experimental verification. However, our
results - except of preformed at Rey ~ 10* — have an additional important
feature. Namely, in our experiment all the nine velocity derivatives Ou;/0z;
were evaluated along with all the three velocity components u;. This was done
via implementation in a field experiment of the multihotwire technique used
by Tsinober et al. (1992, 1997) in laboratory. This allowed to use invariant
quantities (i.e. independent of the system of reference) such as energy, full
dissipation (not its surrogate), enstrophy, enstrophy generation, etc., as being
most appropriate to describe physical processes.

In the sequel we describe shortly the experiment followed by some results
from it relevant to this communication, discussion and concluding remarks.
More detailed description of the experiment along with various results will be
published elsewhere.

2 The experiment

The choice of the site was one of the most complicated problems. A site
was found that answered most of the requirements after a year of search.
It is located in a field just outside the Kfar Glikson kibbuts and belongs to
the kibbuts. It is a flat grass covered ground with 4.5 km fetch downwind
starting with a grove of trees about 15 m hight. Concrete foundations were
casted at the station for a mast 10 m hight, diesel generator, and a light
prefabricated building for a laboratory with the equipment necessary for the
experiment. This included a PC computer, sample & hold, anemometers and
other electronics, various controls and auxiliary equipment. A special high
precision calibration unit was designed and manufactured for computer con-
trolled three-dimensional calibration of the 20 hot-wire probe consisting of
five four-wire arrays forming a cross. Several essential technological innova-
tions were introduced in the manufacturing process of the probe in view of
specific requirements of a field experiment as compared with the probe used
by Tsinober et al. (1992, 1997) in laboratory experiments. These innovations
improved the reliability of the probes and fastened the production process.
Considerable amount of work was required to prepare the software for data
acquisition and calibration. The preparation of the experiment took 3.5 years.
This is mainly due to the specific aspects of a field experiment. in general,
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and special requirements to the precision, in particular, which apart of huge
investments in the ‘hardware’ required much larger variety and amounts of
work to be made.

The reported experiment involves recording and processing of large amounts
of data. The results presented here are based on one chosen measurements
run, taken at the height of 10 m in approximately neutral, slightly unstable
conditions. The duration of the run was 15 min ( i.e it was a 6.3 km long
sample) and it contained about 8.5 x 10 simultaneous samples of 20 channels
taken at sampling rate nearly 10,000 kHz per channel.

The basic data on this particular run are given in table 1.

Uy u, uy U A N rew C Rea
m/s m/s m/s m/s m m

70 10 10 06 0.4 8-10* -0.33 0.53 10*

Table 1. Basic information on the experimental run.

The notations are as follows: z; - horizontal streamwise, Za - horizontal
spanwise, and z3 - vertical coordinates respectively; u; - corresponding com-
ponents of velocity fluctuations, u; - their rms values; Tyu; = (u1u3) [ Ouy Oua
- correlation coefficient between the streamwise and vertical components of
velocity fluctuations; C - Kolmogorov constant.

A number of tests were performed regarding the properties of the field of
vélocity fluctuations itself and velocity derivarives. These include those as
in Tsinober et al. (1992) as well as several additional ones. Spectra for all
the three velocity components possess wide inertial range with a power law
(kn)_sl % extending over about 3.5 decades, ending at longitudinal scale about
7 cm, where the spectra deviate from the power law due to the influence of
viscosity. It is noteworthy that the compensated spectra look not that ‘nice’,
so that the inertial range is considerably shorter. Similar behavior is observed
when looking at r — dependence of structure functions. All this seems to be
related to a much broader issue on the very existence of scaling in turbulent
flows.

Velocity derivatives in the mean flow direction, z;, were calculated accord-
ing to Taylor hypothesis. In calculating the z;-derivative we used both the
mean and the instantaneous velocity. The difference was insignificant.

The derivatives in the spanwise and vertical directions were calculated
taking velocity differences between the suitable arrays and dividing by the
distance between these arrays. Data from five arrays allow to calculate the
spatial derivatives in several ways, so that we used nine possible combinations
in order to check the reliability of evaluating of velocity derivatives.

Skewness and flattness of velocity derivatives are shown in table 2.



Skewness

du; Bup Buzg Qi ;L {wiwgSik) {93585k 80i)
By Bz2 dza Oz ? - (w2)3/2 (52)3/2
0.73 0.65 0.65 0.05+0.1 0.18 0.38
(0.21)5%:0,7 (0-42)Sa_u1=0-7
8z w1
Flattness
Buy 15 () 9 (wh) (W) 3§£w_k._3ik)2_2
oy, 7 (892 5 (w2  (wi)(s?) (w?)(s?)
Real 2025 17.5 27.6 6.7 3.6
Gaussian 3 3 3 1 1

Table 2. Skewness and flatness (kurtosis) of velocity derivatives.
The third line in the table for skewness contains values of 1“(’—;‘;%%1

and E‘T’i’—’;%—‘) obtained assuming isotropy and Ses, = 0.7.

82) 23]

It is noteworthy that our results for the skewness Sou, & 0.05 is signifi-
. oz
cantly larger than Sesw, # 0.03. Similarly Souy = —0.2 is e3ven larger. This is
[2] oz

consistent with the re;:Jlts on the anisotropy of small scales resulting from the
presence of mean shear (Garg and Warhaft (1998) and references therein).

It is seen that the skewness of the derivatives Suy/0z, and Ousz/0z3 is
close to the one of du;/8z3. Also, noteworthy is the agreement of these:values
(~ 0.6-0.7) and of the flatness (~ 20-+25) with the one known from literature
(e. g see the review by Sreenivasan and Antonia (1997)).

3 Direct coupling of large and small scales.

Here to a large extent we follow the approach of Praskovsky et al. (1993).
The main difference is that we have access to invariant quantities such as
energy, dissipation (not the usually used surrogate), enstrophy, etc.

We start with the correlation coefficients between the large scale quantities
like u;, v (the centered magnitude of the vector of velocity fluctuations) and
the moments of different velocity differences from the inertial and dissipative
range. Obviously we have the latter only in the streamwise direction with the
exception of those used to estimate the derivative in the vertical and spanwise
direction. It is noteworthy that the former are quite reliable. Some results
are shown in Table 3.

It is seen that the correlation between the large and small scales definitely
is not negligible. The results shown are in agreement with those obtained by
Praskovsky et al. (1993).



/n i 35 110 | 350 | 1000
(u1 - 6u1) / (04,050,) | 0.0028 | 0.0415 | 0.0646 | 0.0991 | 0.1424
{ug - 6u3) [ (0u,054,) | 0.0041 | 0.0528 | 0.0806 | 0.1231 | 0.1755 |
(u3 - 6us) [ (Gusosu,) | 0.0065 | 0.0876 | 0.1345 | 0.2062 | 0.2974
(u-bu1) / (0uTsu,) 0.0001 | -0.0023 | -0.0033 | -0.0033 | -0.0012
(u-Bu2) [ (Guose,) | -0.0007 | -0.0038 | -0.0061 | -0.0089 | -0.0112
(u - 6u3) / (OuOsus) ~0.0001 | 0.0046 | 0.0064 | 0.0094 | 0.0045
{u1 - 6un) / (0w, 05u,) | -0.0003 | -0.0001 | 0.0008 | 0.0026 | 0.0070
(1 - 5us) / (0w, 05us) | 0.0009 | 0.0014 | 0.0024 | 0.0035 | 0.0066
(w1 (u1)*) / (0, 0%,,) | 0.0070 | -0.0333 | -0.0427 | -0.0520 | -0.0545
(uz- (6u2)?) / (0u,03,,) | -0.0150 | -0.0199 | 0.0212 | -0.0217 | -0.0312
(u3 - (6us)*) / (0us0%,,) | 00506 | 0.0769 | 0.0817 | 0.0906 | 0.0706
(u-(6w)*) /( (ruo},,) | 00282 | 0.0386 | 0.0403 | 0.0466 | 0.0531
(u-(6u2)?)/ (0u0},,) | 0.0202 | 0.0276 | 0.0308 | 0.0364 | 0.0485
<u-(5u3) Y/ (0uo?,,) | 0.0222 | 0.0336 | 0.0388 | 0.0466 | 0.0635
(u1 - (62)*) / (0w, 03,,) | 0.0099 | -0.0564 | -0.0575 | -0.0574 | -0.0630
(u1 - (6us)*) / (0u,02,,) | -0.0061 | -0.0420 | -0.0479 | 0.0527 | -0.0534
(u1 - (8u1)°) / (0w,03,,) | 0.0004 | 0.0223 | 0.0374 | 0.0610 | 0.0930
(12 - (5u2)*) / (0u;03,,,) | 0.0009 | 0.0236 | 0.0419 | 0.0669 | 0.1119
(us - (6us)’) / (0us03,,,) | 0.0025 | 0.0436 | 0.0734 | 0.1092 | 0.1722
(u1 - (6u1)*) / (0u,06u,) | 0.0026 | -0.0054 | -0.0124 | -0.0199 | -0.0231
(12 - (612)*) / (0uy050,) | -0.0022 | -0.0015 | -0.0074 | -0.0071 | -0.0225
<u3 - (6us)*) / (7us0sus) | 0.0044 | 0.0153 | 0.0186 | 0.0118 | 0.0100

Table 3. Correlation coefficient between u;, u; = u;(z+7)—u; (),
and the centered magnitude of the vector of velocity fluctuations
v=1u— (u),u? =u?+ul+ul

The direct coupling of large and small scales is seen most clearly from the
conditional averages of velocity differences conditioned on large scale quanti-
ties (see Figures 1 and 2). The main result is that all conditional statistics
are not independent of large scale quantities as is expected without coupling
between large and small scales.

In Figure 1 we show some results similar to ones obtained by Praskovsky
et al. (1993) (at the left column)) in parallel with those conditioned on the

centered magnztude of the vector of velocity fluctuations v = u — (u) , where
u? = u? + u2 + u2. Similar behaviour is observed for conditonal statsistics of

(6ul) for all 1 =1,2,3 and n = 2, 3,4.
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Figure 1. Conditional averages of velocity increments conditioned:
left — on the u; fluctuation, right — on the centered magnitude of
the vector of velocity fluctuations v.



Two aspects deserve special comment.

First, there is a clear tendency of increase of the conditional averages of the
structure functions with the energy of fluctuations as is seen from the right
column of the Figure 1. Second, such a tendency, that is the direct coupling,
is observed also for the smallest distance ~ 7, which was used for estimates
of the derivatives in the streamwise direction. This result is quite reliable due
to the absence of problems in estimating of the derivatives in the streamwise
direction like those in the other two directions.

In Figure 2 we show also similar conditional statistics for the enstrophy
w? and the total strain s;;s;;. The result is quite similar to the one shown
in Figure 1 for the smallest distance ~ 7. This result is definitely correct
qualitatively. -
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Figure 2. Conditional averages of enstrophy w? and total strain
$:;8:; conditioned on the centered magnitude of the vector of ve-
locity fluctuations v.

Special mentioning deserves the PDF of the angle between velocity and
vorticity, since it reflects the correlation beween the two vectors (Figure 3).
Though the alignment is weak, it is significant and is another manifestation
of the direct coupling between large and small scales. It is not surprising that
the correlation between a large scale and a small scale quantity is small, in
our case (u-w)/uw = 5-10~%. However, this does not mean that the coupling
between them is small as well. -

It is noteworthy that two correlations involving large and small scales are
of particular importance for shear flows. These are {wyu3) and (w3uy). since



they are directly related to the derivative® of the Reynolds stress o

d (ulu;;)
dz

The important point is that the corresponding correlation coefficients C,py; =
7.7.1073 and C,,u, = 1.3 1072 are small, but significant: if they vanished
precisely the mean flow would not ‘know’ anything about the fluctuative part
of the turbulent flow (Tsinober (1998, 1999a)).

~ (waug) — (w3u2)

0.54

0.52

0.5

Relative frequency

Figure 3. PDF of the cosine of the angle between the vectors of
velocity and vorticity.

4 Concluding remarks

The results obtained in this research are the first ones in which explicit infor-
mation is obtained on the field of velocity derivatives (all the nine components
of the tensor g—;‘:) and velocity differences along with all the tree components
of velocity fluctuations at Rey ~ 10% Up to present the field of velocity
derivatives was accessible at Re, ~ 102

The general conclusion drawn from the whole experiment is that the ba-
sic physics of turbulent flow at high Reynolds number Re, ~ 104, at least
qualitatively, is the same as at moderate Reynolds numbers, Re; ~ 102. This
is true of such basic processes as enstrophy and strain production, geometri-
cal statistics, the role of concentrated vorticity and strain, and depression of
nonlinearity.

3This is the quantity entering in the equation for the mean flow.
4This relation is precise if 8/dz (---) =0, e. g. in a channel flow.
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One of the specific conclusions is that the small scales - both from the
inertial range and from the dissipation range — are not decoupled from the
energy containing range even at Reynolds numbers (based on the Taylor mi-
croscale) as large as 10%. In other words the Galilean invariance is broken
in the restricted sense that the properties of small scale turbulence are not
independent of parameters characterizing the large scales, such as, e.g. the
energy of velocity fluctuations. This direct interaction/coupling of large and
small scales seems to be a generic property of all turbulent flows and one
of the main reasons for small scale intermittency, non-universality, and quite
modest manifestations of scaling.

This ‘contamination’ of small scales by the large ones seems to be unavoid-
able even in homogeneous and isotropic turbulence, since there are many ways
to produce such a flow (i.e. many ways to produce the large scales).® It is the
‘difference in the mechanisms of large scales production which ‘contaminates’
the small scales. Hence, non-universality.

The direct interaction/coupling of large and small scales is in full confor-
mity and is the consequence of the generic property of Navier-Stokes dynamics
(as well as some kinematics) - strong non-locality. This includes also another
aspect of the coupling between the small and large scales, the bidirectional
nature of this coupling, i. e. the ‘reaction back’ of the small scales (Tsinober
(1998, 1999b)). But this is another issue.
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