QUBIT DEVICES

HOWARD E. BRANDT

ABSTRACT. This lecture presents brief mathematical descriptions of a variety
of potential qubit devices. The qubit devices examined include an interaction-
free detector, a quantum key receiver, quantum games, quantum gates, qubit
entanglers, Bell state synthesizers, Bell state analyzers, quantum dense coders,
entanglement swappers, quantum teleporters, quantum copiers, quantum error
correctors, quantum computers, and quantum robots.

1. INTRODUCTION

A qubit device [1] is a physical implementation of a set of quantum bits, or
qubits, as they are popularly known [2,3]. A gubit is a quantum system with a two-
dimensional Hilbert space, capable of existing in a superposition of Boolean states,
and also capable of being entangled with the states of other qubits [4]. Qubit devices
include quantum computers, quantum gates, quantum key receivers, entanglement
swappers, quantum teleporters, quantum dense coders, interaction-free detectors,
quantum robots, quantum games, quantum copiers, etc.

The exciting new interdisciplinary fields of quantum information processing,
quantum computing, quantum communication, and quantum cryptography are rich
with a plethora of potentially useful qubit devices [5]. The major obstacle to the
successful development of these devices is the phenomenon of quantum decoherence,
in which even weak interactions of the qubits with noncomputational environmental
degrees of freedom can destroy the off-diagonal components of the reduced density
matrix of the qubits, obliterating essential quantum coherence and quantum en-
tanglement. This lecture is an abbreviated version of recent work by the author
[6], with some additions; it presents brief mathematical descriptions of a variety of
potential qubit devices, and includes expository discussions of the issue of quantum
decoherence as it relates to the possible practical development of these devices.

2. INTERACTION-FREE DETECTOR

The interaction-free detector [6-8] provides a simple example of the practical use
of path qubits. (The two-dimensional Hilbert space of a path qubit represents two
possible quantum-interfering paths of a photon in spacetime [5].) In this photonic
device, the presence of an opaque object inside one arm of an interferometer destroys
the interference of an incident photon, sometimes signaling the presence of the
object, even though the photon could not have taken a path intersecting the object.

A simple example of an interaction-free detector [8] is schematized in Fig. 1.
Here, a single photon in polarization state ju) enters a Michelson interferometer
consisting of a 50/50 beamsplitter (BS), a 90° phase shifter (¢), two mirrors (M;
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FIGURE 1. Interaction-free detector.

and M), and a single-photon photodetector (D). All optical elements are here as-
sumed to be ideal and not to affect the polarization u. An object with transmission
coefficient T' may or may not lie in the path between the beamsplitter and mir-
ror My. If it is not present, its absence is effectively described by T" = 1. The
quantum mechanical probability amplitude [9-12] that the photon reflects at the
beamsplitter BS toward mirror M; is 272/2i. The factor of 271/2 is due to the 50/50
beamsplitter (with transmission coefficient 1/2), and the factor of i is due to the
reflection at the beamsplitter, which produces a phase shift e"/2 = 4 [13-15]. Then
the probability amplitude A, that the photon also passes through the object with
transmission coefficient T', reflects from mirror M;, returns through the object and
the beamsplitter, and goes on to the detector D is given by

(1) A = (2-1/2) (72/2) (127) (271/2%) = 27uT.

The factor (271/21) is due to the reflection at the beamsplitter, the two factors of
T*/2 are due to the two passages through the object characterized by its transmis-
sion coefficient 7', and the factor (271/2) is due to the passage through the 50,/50
beamsplitter with transmission coefficient 1/2. Similarly, the probability amplitude
Ay that the photon initially passes along the other possible path directly through
the beamsplitter BS, passes through the 90° phase shifter ¢ to mirror Mz, returns
back again to the beamsplitter, and is then reflected to the detector D is given by

@) Ag = (2—1/%‘) (e‘"/z) (e""/z) (2—1/2) = 271,

Here, reading from right to left, the factor (27/2) is due to the photon passing
through the 50/50 beamsplitter with transmission coefficient 1/2, the factors of
¢i™/2 are due to the two traversals of the 90° phase shifter, and the factor (2-1/ %)
is due to the reflection at the beamsplitter. It follows that the total quantum
mechanical probability amplitude A that the photon triggers the detector D is
given by the sum of the amplitudes for both possible paths of the photon through
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the interferometer to the detector, namely,
(3) A=A + As.

This is single-particle quantum interference. The beamsplitter effectively converts
the state of the photon into a two-state system, corresponding to the two possible
paths 1 and 2 of the photon through the interferometer to the detector. This is a
path qubit [5]. Substituting Egs. (1) and (2) in Eq. (3), one obtains for the total
amplitude

(4) A=2"Y(T-1).
The probability that the detector D is triggered is then given by

(5 Po(T) = 4P = 3 (T 1)°.

If the object is not present, then effectively T' = 1, and according to Eq. (5), the
probability that the detector is triggered is vanishing, namely,

(6) Pp(1l) =0.
Therefore, if the object is not there, the detector D cannot be triggered. If the
object is present and opaque, namely T’ = 0, then according to Eq. (5),

@ %@:i

Thus, if the object is there, the detector D will be triggered 25% of the time
(probability 1/4 for each single incident photon). The probability that the photon
is absorbed if the object is present is clearly 1/2, because that is the probability
that the photon entering the interferometer is reflected to the object by the 50/50
beamsplitter. The probability that the photon instead returns to the entrance port
is clearly 1/4, and the probabilities add to unity as they must. Thus, with this
particular interaction-free detector, one can detect the presence of the object 25%
of the time. Clearly, when the object is present and the detector is triggered,
the photon cannot have taken the path intersecting the object, because if it did
it would be absorbed before reaching the detector. This is the basis for saying
that the photon does not “interact” with the object. However, there must be an
interaction term in any Hamiltonian describing the system [8].

3. QUANTUM KEY RECEIVER

Another simple example of a photonic qubit device is a quantum key receiver
based on a positive operator valued measure (POVM). Specifically, a POVM is a set
of nonnegative Hermitian operators A, that act in the Hilbert space of a quantum
system and sum to the identity operator, namely [16-18],

(8) > A,=1
n

The index p labels the various possible outcomes of a measurement implementing
the POVM. The probability P, of outcome p, if the system is in a state described
by the density matrix p, is given by

(9) P, =Tr(Aup).
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The advantage of a POVM is that it may have a lower inconclusive rate and may
allow the extraction of more information than can the usual von Neumann-type
projective measurement [16,20].

Because of the noncommutativity of nonorthogonal photon polarization project-
ive measurement operators, a simple von Neumann-type projective measurement
cannot conclusively distinguish the state of a photon having two possible nonortho-
gonal polarization states. If one wants to be able to distinguish conclusively between
two nonorthogonal photon states |u) and |v) at least some of the time, it is useful
to consider a POVM used in quantum cryptography [16,19-25]. Quantum crypto-
graphy [26-31] provides a number of practical applications for qubit devices.

In quantum cryptography, one is able, in principle, to produce a shared key whose
security is guaranteed by the laws of quantum mechanics. The key is a random
bit sequence which, when added to the message (encoded in binary), forms the
encrypted message, and which, when subtracted from the encrypted message, yields
the decrypted message. Qubit devices can be used in transmitting and receiving
the key, and also in eavesdropping.

A POVM used in quantum cryptography consists of the following set of three
nonnegative Hermitian operators:

(10) Au = (14 (o)) 7 L~ o) (ol],
(11) Ay = (1+ (ulv) 7" 1 — u) (],
(12) Ay =1— Ay — Ay,

in which kets ju) and |v) represent nonorthogonal single-photon states. The POVM
operators, Egs. (10) to (12), clearly satisfy Eq. (8). Specifically in the present work,
the states |u) and |v) are taken to be linear-polarization states with the Dirac
bracket (u]v) given by

(13) (u]v) = cos b,

where 0 is the angle between the two polarization states. A general qubit state is
given by

(14) 1) = e|u) + Blv,)

where o and § are complex numbers. The operators (10) to (12) are clearly Her-
mitian; however, they are not projection operators, since the product of any one of
them with itself does not yield itself. Also, for nonorthogonal states they do not
commute.

The probability that an arbitrary qubit |¢) given by Eq. (14) is measured to be
in the u-polarization state can be calculated with Eqgs. (9), (10), (13), and (14); the
calculation yields

(15) Py =Tr (Au]$) (1) = (#|Aul¥) = |al*(1 — cosf).

The first equality holds, since for a pure state |1}, the density matrix is |¢) (¢]. A,
is a positive operator, as it must be. This follows since |1} can represent any state
in the two-dimensional Hilbert space of states, and the right-hand side of Eq. (15)
is nonnegative. This must be so, since P, is a probability. Analogously, one obtains

(16) P, = ($|4u$) = |B* (1 — cos6),
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and
17) Py = (| A2 |9p) = |a + B)? cos 8,

both of which are also clearly nonnegative. In Eq. (16), the qubit is measured to be
in the state |v). In Eq. (17), P; is the probability of an inconclusive measurement,
meaning that it is undecided whether the qubit is in state |u) or |v). If the state
|}, Eq. (14), is normalized to unity, then

(18) 1= (Yly) =la|* + (" F + af*) cos 8 + |6]°,

and it then follows from Eqgs. (15) to (17) that the probabilities sum to unity, as
they must:

(19) P,+P,+P =1

When the incident photon is in the state |u), one has (a,5) = (1,0), and Eq. (16)
becomes (u| Ay, |u) = 0. When the incident photon is in the state |v), one has
(o, 8) = (0,1), and Eq. (15) becomes (v| A, |v) = 0. Therefore, when an ideal
detector representing the operator A, responds positively, it follows that a photon
with a v-polarization state cannot have been received. Likewise, when an ideal
detector representing the operator A, responds, a photon with a u-polarization
state cannot have been received. The operator A; represents inconclusive responses,
since Eq. (17) is nonvanishing for (o, 8) = (0,1) or (1,0). Thus a u-polarized photon
can result in a nonzero expectation value (and the associated response) onmly for
detectors representing the A, or A- operators. A v-polarized photon excites only
the A, or A; detectors. It follows that the POVM of Eqs. (10) to (12) distinguishes
conclusively between two nonorthogonal states |u) and |v) at least some of the time.

For the purpose of secure key generation in quantum cryptography, one can
employ a train of single photons having two possible equally likely nonorthogonal
polarization states |u) and |v), which encode 0 and 1, respectively, to securely com-
municate a random bit sequence between a sender (Alice) and a receiver (Bob).
To detect a photon, Bob can use a quantum key receiver. If Bennett’s two-state
protocol [25] is employed, it can be advantageous for the receiver to be based on
a POVM [16,19,20]. In the two-state protocol, a positive response of the receiver
(the reception of a photon in a u- or v-polarization state) is publicly communicated
by Bob to Alice, without revealing which polarization was detected, and the cor-
responding bits then constitute the preliminary key shared by Alice and Bob. Bits
corresponding to photons that do not excite the u- or v-polarization state detectors
in the receiver are excluded from the key. The ideal receiver must be such that if its
u-polarization detector is excited, then Bob is certain that the u-polarization state
was received. Also, if the v-polarization detector is excited, then a v-polarization
state was received. Because of the noncommutativity of nonorthogonal photon
polarization-measurement operators representing nonorthogonal photon polariza-
tion states [5], and also because arbitrary quantum states cannot be cloned [32,33],
any attempt to eavesdrop can, in principle, be detected by Bob and Alice.

A quantum key receiver based on a POVM is shown schematically in Fig. 2. It is
an all-optical implementation of the POVM given in Egs. (10) to (12) [21-23]. The
straight lines with arrows represent possible optical pathways for a photon to move
through the device. The path labeled |} is the incoming path for a photonic qubit
represented by an arbitrary polarization state, given by Eq. (14). Alsoin Fig. 2, D,,
Dy, and D7 designate photodetectors representing the measurement operators A,
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FIGURE 2. Quantum key receiver.

A,, and Ay, respectively. Shown also is a Wollaston prism W [34], which is aligned
so that an incident photon with polarization vector Q,H_,, takes the path labeled by
the state |4;) and é\u_,_,,, and not the path labeled by the polarization vector Qu_v
and the state |1);). Here Qu+1, denotes a unit polarization vector corresponding to
polarization state |u + v) = |u) + [v), and is perpendicular to the unit polarization
vector Qu_,, corresponding to the polarization state |u — v) = |u) — Ju). It follows
from Eq. (13) that the states |u + v) and |u — v) are orthogonal, namely,

(20) (u+vlu—v)=0.

Also, clearly,

(_21) éu+u . Qu—y =0,

which is consistent with Eqs. (20) and (13). In accordance with the property of a
Wollaston prism of separating orthogonal polarization states, an incident photon
with polarization vector Qu_,, takes the path labeled by the state |13).

The device has two beamsplitters [34], designated BS; and BS; in Fig. 2. Beams-
plitter BS; is a 50/50 beamsplitter for a photon entering either of its entrance ports.
Beamsplitter BS; has transmission and reflection coefficients specified in Egs. (34)
and (35) below. The two paths from the Wollaston prism to beamsplitter BS; have
equal optical path lengths. Also shown in Fig. 2 is a 90° polarization rotator [34],

designated R, which transforms a photon with polarization vector /e\u_,, into one

with polarization vector — /e\,H.,,. There is also a single mirror M, as shown in Fig. 2.
All optical elements are here taken to be ideal.

The state of a photon taking the path designated by the state |1;) in Fig. 2 is
given by

A A
(22) 1) = | €utv){€uts [¥),
where | @,H_,,) represents a unit ket corresponding to polarization vector Qu+v.
Clearly, B
A |u) + |v)
(23) | €uto) = :
[(Cul + (v]) (Ju) + [o))]™?
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Substituting Eq. (23) in Eq. (22), and using Egs. (14) and (13), one obtains

(24) 1) = 27172 (@ + B) (1 + cos 6) /% | €y ys).
One also has

(25) 3) = | Cu—v){urs [9),

where

(26) | Cues) = u) — v}

[((ul = (o) (fu) = o))/
is a unit ket corresponding to polarization vector Qu_u. Next, using Egs. (25), (26),
(14), and (13), one obtains
(27) la) = 272 (&= B) (1 — cos6)*/* | &)
This device exploits the entanglement of path and polarization qubits. For example,
the state |i12) of the photon exiting the Wollaston prism is
i) = (1) + i) = 2712 (@ + B) (1 + cos8)/? 1) @ | Eus)
(28) +27Y% (a - B) (1 - c0s6)"/*|2) ® | €u-s),

in which the kets |1) and |2) are unit kets corresponding to the upper and lower
paths, respectively (to the right of W in Fig. 2). The polarization qubit {|u), [v)}
is entangled with the path qubit {|1),]2)}.

For ideal photodetectors Dy, D,, and D¢, it is evident from Fig. 2 and Eq. (9)
that one must require

(29) P, = |ips)* = (velthe) = ($|Au),
(30) Py = |ya]® = (rlypr) = (] 44 [¥),
and

(31) Py = |ysf® = (slabs) = (|47 [4),

respectively, in order that the expectation values of A4,, A,, and A7, measured by
detectors Dy, D,, and D>, respectively, equal the probabilities P,, P,, and P, that
a photon is incident. From Egs. (31) and (17), it follows that, up to an irrelevant
phase factor, one has

(32) [¥3) = (& + B) (cos8)? | €y po).

For a single photon incident on beamsplitter BS;, one can effectively ignore the
unused vacuum port of the beamsplitter (see Ref. 23 and also p. 9 of Ref. 35). The
transmission coefficient 7} of beamsplitter BS; must then be given by

(¥3l¥s)
33 TN = —.
e L= Wl
Therefore, substituting Egs. (32) and (24) in Eq. (33), one obtains
(34) T; = 1 —tan®(8/2).

The corresponding reflection coefficient R; is
(35) R1 =1- T1 = tan2(0/2).
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From Fig. 2, it is also evident that

(36) (altpa) = Ri(tha[41);
substituting Eqs. (24) and (35) in Eq. (36), one obtains
(37) (Yaltps) = % la+ B (1 — cosb).

Since the reflection at BS, results in a /2-phase shift [13-15], resulting in a factor
of exp(im/2) = i, it follows from Eq. (37) that

(38) [ha) =272 (@ + B) (1 — cos8)/? | €, 40).

Since the polarization rotator R converts polarization in the direction /e\.u_v into
that in the direction — @u.H,, it follows from Eq. (27) that

(39) ls) = —27/2 (@ - B) (1 — cos 8)'/2 | €uy).

Since the beamsplitter BS, is a 50/50 beamsplitter, its reflection coefficient is
(40) Ry=3

and its transmission coefficient is

(41) Ty = %

It then follows that

(42) Ie) = 271/%gps) + 827/ 2|ahy),

and

(43) [r) = 27 2eha) + 82712 ¢is).

Therefore, substituting Eqgs. (38) and (39) in Egs. (42) and (43), one obtains
(44) o) = —a (1 - cos6)'/2 | €u),

and

(45) [pr) = iB (1 = cos8)/% | o).

For an ideal detector, Eq. (29) holds, and by substituting Eq. (44), one gets
(46) (¥l Auly) = |a? (1 - cos®),

consistent with Eq. (15). Similarly, from Eqs. (30) and (45), it follows that
(47) ($lAo 1) = |BI>(1 - cos ),

consistent with Eq. (16). Thus, the device depicted in Fig. 2 satisfies all the appro-
priate statistics, Eqs. (29) to (31), and is a faithful all-optical implementation of
the POVM given by Egs. (10) to (12).

Since the quantum key receiver is all-optical, all optical path lengths are only
of the order of tens of centimeters, and decohering interactions with the photonic
qubits are negligible, it follows that, generally, decoherence is not an issue for this
device. However, since it is a very serious issue for many other prospective qubit
devices, the following section briefly reviews the physics of quantum decoherence.
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4. QUANTUM DECOHERENCE

Consider a two-state system in the absence of environmental interactions. The
state vector |1} for such a two-state closed system lies in a two-dimensional Hilbert
space and is given by
(48) 1Y) = a0 |0) + o [1),
where |0) and |1) are kets representing the two states, here also serving as orthonor-
mal basis vectors, and oy and o are complex numbers. Thus, one has

(49) (Oo) =(1]1)=1, (0|1} =0.
The corresponding density operator is given by [36,16]
(50) p =) (¥l

Substituting Eq. (48) in Eq. (50), one obtains for the density operator of this two-
state closed system

(51) p = laol” {0) (0] + aoai 10) (1] + ey [1) (0] + e [1) (1]
The corresponding density matrix is
|exo]? aoai‘}
52 2l =[mip|n)] = :
(52) ] = [t ] = | o] 200

The diagonal components are the populations, and the off-diagonal components are
the coherences [36]. The populations measure the probabilities that the system is
in either state, and the coherences measure the amount of interference between the
states. The expectation value of any observable represented by an operator A for
the two-state system is given by

(53) Wl Al) = Te(pA) =) PmnAnm,

and it is clear that, in general, the coherences are as important as the populations
in determining expectation values of observables.

Generally, a system does not exist in absolute isolation, and possible interactions
with both the external and internal environments must be taken into account. If
the two states of interest are part of an object containing other degrees of freedom,
the latter constitute the internal environment, and the external environment is
external to the object. For complex systems, the two states of interest might
themselves represent two collective observables [37]. Consider now, therefore, a two-
state system with state vector [4(2)) at time ¢, including environmental interactions:

(54) [¥(#)) = a0 |0) ® |eo) + a1 [1) ® Jea)

in which now the two possible states of the system, |0) and |1), through unit-
ary evolution, have become entangled with the corresponding normalized environ-
mental states |eg) and |e;), respectively. The environmental states are, in general,
nonorthogonal. Here ® denotes the tensor product. The density matrix becomes

p(t) [$(2) (w(@®)|
lvol* 10) ® leo) (0] ® (eo] + @0ar} [0) ® [eo) (1] ® (e
(55) + agon 1) @ lex) (0] ® (eo| + [ |* 1) @ fer) (1] ® {ea ] -

Here and in the following, I use the term “density matrix” interchangeably with
“density operator.” If we are interested only in what the two-state system is doing,
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and not the environment, one need only know the reduced density matrix of the two-
state system, with the environmental states traced out [36,37]. For this purpose,
choose as environmental basis vectors |eo) and |eg ), where

(56) (e(ﬂeo) =0, (ep]e1) = cos 6, (e(ﬂ e;) =sin 6, (epleo) =1, (e1]e1) =1.
The reduced density matrix ps(t) of the two-state system is then given by
(57) ps(t) = Trep(t) = {eo| p(t) leo) + (e | p(¥) |5 ) ,

where Tr. denotes the trace over the environmental basis states. Substituting
Eq. (55) in Eq. (57), and using Egs. (56), one obtains

ps(t) = |ao|” [0) (O] + agaf cos 6 |0) (1]
(58) + oy cos 8 1) (0] + |a |* (cos® 8 + sin® 8) |1) (1].
If one uses the trigonometric identity cos? 8 + sin® @ = 1, Eq. (58) becomes
ps(t) = |aol?]0) (0] + aoal cos 8 |0) (1
(59) + aja; cos 0 [1) (0] + |ar |2 |1) (1].

Comparing Eq. (59) with Eq. (51), one can see that, as a result of including en-
vironmental interactions, the coherences each contain an additional factor of cos 8,
the overlap between the environmental states (see Eqgs. (56)). The system and its
environment evolve, interacting incessantly, and because of decoherence, the over-
lap between the environmental states |eg) and |e;) can become negligible; one then
has orthogonalization of the environmental basis states, namely,

(60) cos 0 = (eo|e1) — 0.

In this case, Eq. (59) becomes

(61) ps(t) ——— |ao|” 0) (0] + |en|* I1) (1]
cos §—0

Decoherence results from interactions with the environment (external and internal).
As a result of the decoherence, the reduced density matrix Eq. (61) becomes, effect-
ively, a statistical mixture. The dynamical evolution represented by Eq. (61) is, of
course, nonunitary: although the evolution of the total density matrix representing
a system and its environment in general evolves unitarily in accordance with the
Schrodinger equation, a reduced density matrix does not. Naturally, the details
of the evolution (Eq. (61)) depend on the specific structure of the total Hamilton-
ian of the system together with its environment, including all possible interactions.
For macroscopic, mesoscopic, and many microscopic systems, the environment com-
monly has an enormous (or at least large) Hilbert space and a crowded energy spec-
trum. Heuristically, in terms of perturbation theory, close energy levels result in
high sensitivity to perturbations. Two slightly different perturbations may lead to
very different perturbed wave functions, which become orthogonal. Environmental
wave functions have many variables, and vanishing wave-function overlap in one
variable is sufficient for orthogonality. The Hilbert space of environmental states
can become so enormous that two states have a small probability of not being ortho-
gonal [37). The resulting loss of phase correlations in the high-dimensional environ-
mental configuration space results in orthogonalization of the environmental states
that are correlated with the system states. This is the phenomenon of decoherence,
resulting in orthogonalization of the off-diagonal components of the reduced dens-
ity matrix [37-50,1,5]. For a complex macroscopic, or even a mesoscopic, two-state
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system, the orthogonalization, Eq. (61), usually occurs very rapidly. The qubits,
representing computational degrees of freedom in quantum information processing
systems, are two-state systems, and their implementation must be chosen such that
interactions with noncomputational internal and external environmental degrees of
freedom are small enough that decoherence of the qubits is sufficiently slow. This
is, in general, difficult to achieve.

5. QUANTUM GAMES

The classical theory of games [51-55] is currently being generalized to include
quantum games [56—-59]. These efforts will inevitably lead to a full-fledged quantum
theory of games, as well as a variety of quantum game implementations. In the area
of quantum communication, optimal copying of quantum states [59] and quantum
eavesdropping [27,60,61] can be treated as strategic games between two or more
players with the goal of extracting maximum information [57,62].

In order to gain some insight into quantum games, it is instructive to briefly con-
sider a particular quantum game, involving coin flipping [56]. In this game, there
are two players, Alice and Eve, and they must flip a penny. However, a real penny
would not suffice to play the game, because the game requires a penny that can be in
a superposition state of head up and tail up, and of course even if such a state could
be produced, it would decohere so quickly that it would be unobservable. Cavity
QED (quantum electrodynamics), ion-trap, or NMR (nuclear magnetic resonance)
implementations of the game have been suggested [56]. A simple all-optical imple-
mentation might be more practical. In any case, any two quantum states forming
a qubit would serve as a quantum “penny,” and implementations of appropriate
unitary transformations acting on the qubit would be used by Alice and Eve to do
the flipping.

The object of the game for Alice is to finish with the qubit tail up; that for Eve
is to finish head up. Neither player may observe the qubit in the course of the
game. The game begins with Alice putting the qubit in a box in the head-up state
|H). Next, if the game is played with classical flipping moves only, Eve either flips
the qubit, using a transformation (represented by an operator F'), or does not flip
it (represented by the identity operator I = 1). The state is not observed. Next,
Alice either does or does not flip the qubit, without observing it. Next, Eve again
flips or does not flip the qubit. Alice and Eve finally observe the qubit, and Eve
wins if the qubit ends up in the head-up state {H}. Otherwise, Alice wins the game.

As an example, for a particular choice of strategies chosen by Alice and Eve, a
possible course of the game might be as follows:

(62) FIF|H) = FI|T) = F|T) = |H),

where |T) denotes the tail-up state of the qubit. Here Eve’s first move is to use the
flip operation to flip the qubit, which is initially in the state |H). In the next move,
Alice does not flip it, and in the last move Eve does flip it. For this example, the
qubit ends up in the state |H), and therefore Eve wins the game. The states |H)
and |T) can be represented by

(63) i =(o) =3,
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respectively. The flipping transformation can be represented by the unitary operator

01
- P=(01),
and not flipping can be represented by the identity operator
10
(65) I= ( 0 1 ) .

One notes, in passing, that the operator F' in Eq. (64) corresponds to the quantum
NOT gate operator, to be discussed in Sect. 6. For the above strategies, one has

(1))
- (13)(2)-(3)-m

In general, however, the game is conceived as a fully quantum game, in which the
nth move corresponds to a general unitary operator U,, represented by a 2 x 2
unitary matrix for which F' and I represent only special cases [56]. Thus

FIF |H)

Uni1 Uni2
67 U, = " ,
( ) " ( Un21 Una2 )
where the matrix elements Uy;j,4,j = 1,2 are chosen such that
(68) U, Ul =1.

An arbitrary quantum strategy might then be represented by the following sequence
of unitary operators [56]:

(69) UsUs Uy lH) =cC1 |H) + co IT) y

in which the first move by Eve is represented by U;, the next move by Alice is
represented by Us, the last move by Eve is represented by Uj, and ¢; and c; are
complex numbers. The resulting state of the qubit is some superposition state of
head up and tail up, as indicated. Suppose [56]

(70) UsUpUp |H) # |H) .

Then Eve can improve her strategy by replacing Us by Uy 1U2' . which is also
unitary, since both U; and U, are. Thus one has

(71) UsUpUy |H)Y = (U USY) UnUy |H)Y = (U2UL) 7 (U2Uh) |H) = |H),
and Eve wins. Or, suppose
(72) UsUUy |HY #|T).

Then Alice can improve her strategy by replacing U, with U; ' FU[ !, which is
unitary, since U,Us, and F are. Thus

(73) UsUxUy |H) = Us (U 'FUTY) Uy |H) = F |H) = |T),

and Alice wins. But the qubit state U3U,U; |H), when finally observed, cannot
be both |H) and |T), and therefore at least one of the players can improve her
strategy if the other player does not change hers. It then follows that the overall
strategies represented by UsUsU; cannot be an equilibrium, since their strategies
are an equilibrium only if neither player can gain by changing strategy unilaterally
[56]. It has, however, also been argued that an equilibrium does exist for mixed
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quantum strategies in which various strategies occur with some probabilities [56].
Such a game is a manifestly stochastic quantum game.

In other work, it has been argued that in a quantum game version of the classical
two-player binary choice game, Prisoner’s Dilemma [54], there is no dilemma if
quantum strategies are allowed [57]. Also, an interesting two-player protocol was
conceived for quantum gambling, and it was demonstrated that neither player can
increase his earning beyond some limit [58]. In other recent work, the optimal
quantum copying problem is informatively described in the form of a game [59].

Although quantum decoherence is not a major issue for small quantum games
such as the coin flipping game (at least if one assumes a sufficiently long-lived
qubit is successfully implemented), quantum decoherence is certainly a major issue
for quantum eavesdropping games, optimal quantum-state copying games, or large-
scale quantum games, just as it is for any large-scale quantum information processor.

6. QUANTUM GATES

In order to develop a multi-component qubit device, it is useful to implement vari-
ous quantum gates. In the following, I present mathematical descriptions of various
photonic implementations. First, consider the guentum +NOT gate (square-root-
of-not gate). As an example, consider the single-photon optical implementation
depicted in Fig. 3, consisting of a single photon incident on a beamsplitter along
two possible paths, designated by the corresponding states, |0) and |1), or more
generally, in a superposition of those two paths. The exit path states are |0') and
|1’}. Using the same methods as in Sect. 2, one has

(74) |0) = 2712 |0) +27/% 1),

(75) 11y = 27120y + 271/2 1),

or in matrix form,
(76 (19 ) =5 1) (1)

10 119

1) i

FIGURE 3. Quantum vNOT gate.
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The matrix operator,

(77) \/sz-l/z( : ; )

is known as the “quantum square-root-of-not gate” or quantum /NOT gate, since

o e (11)(11)=(00) (2 4)

and the matrix operator

_(01
o ve(01)
is the NOT operator, which transforms |0) to |1) and |1} to |0), thus:

® w ()=o) ()-(w)

The overall phase factor, i = €/*/2, in Eq. (78) can be ignored here, and could be
physically removed with —m/4 phase shifters located at both exit ports in Fig. 3.
Then, one has, effectively,

(81) vNVN =N.

This suggests that a quantumm NOT gate can be constructed from a succession of
two quantum vNOT gates. Note also that the operator N is unitary, since

@ w032 8)-(3 1)

Stacking two beamsplitters successively, as in Fig. 4, produces the succession of
two quantum v NOT gates, as suggested above. The various modes, or paths, are
labeled in Fig. 4 by their path states. Using the rules for forming and combining
amplitudes (see Sect. 2), one obtains

(83) 0"y = 2712 0" + 271/24|1"),

(84) 1"y = 2724 |0y + 2742 |1").
Next, substituting Eqgs. (74) and (75) in Eqs. (83) and (84), one obtains
(85)
0"y = 272 (272/2 o) + 271/% 1)) +271/% (2-1/%‘ [0) + 271/ 11)) =i|1),

10} 11} [ie]

1) ) 117

FIGURE 4. Quantum NOT gate.
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(86)
11") = 27172 (2—1/2 |0) + 27172 |1)) +271/2 (2—1/%7 |0 + 271/2 |1)) = [0y,

or, equivalently, in matrix form,

0y N _.(0 1 |0)
&7 () =:(2 o) (1)
which is in agreement with Eq. (78). The common phase factor, i = /2, can again
be ignored, and could be physically removed as indicated previously, or instead by
locating — /2 phase shifters at both exit ports in Fig. 4. The unitary operator N,
Eq. (79), can therefore be faithfully implemented by the device.

Consider next the one-photon device shown in Fig. 5, consisting of one beams-
plitter and two —m/2 phase shifters. The possible paths for a single photon entering
from the left are labeled by the corresponding path states. The entering photon
may be in path state |0) or |1), or a superposition of the two. From the figure, one
can see that the output states |0') and |1’} are

(88) [0') = 271/2|0) + e~ i"/2271/2|1) = 272 (|0) + |1)),

(89) lll) — 2—1/2ie—i1r/2 IO) + e—s’1r/22-1/26—i1r/2 ll) — 2—1/2 (IO) _ ll)) .
Rewriting Eqs. (88) and (89) in matrix form, one has

o (1)) ()

The unitary operator

(91) H=2—1/2( i _11 )

acting on the path qubit, in this example, is called the Hadamard transform. The
Hadamard gate, depicted in Fig. 5, is a one-photon optical implementation of the
Hadamard transform acting on a qubit. Two Hadamard gates can be combined to

|0} 117

I 0)

FiGURE 5. Hadamard gate.
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form a single-photon balanced Mach-Zehnder interferometer [34], as in the following
section.

A particularly simple optical example of a single-photon device is depicted in
Fig. 6: an optical implementation of the quantum controlled-NOT gate (also called
the quantum XOR gate). It consists of a single polarization rotator that converts
horizontal polarization into vertical, and vertical into horizontal, for one of two
paths. Here, if a photon with vertical or horizontal polarization enters along path
|0), it simply passes to the exit port |0’) unchanged, and if it enters along path |1),
its polarization changes from horizontal to vertical, or vertical to horizontal. Thus,

(92) [0} |=) = [0)|-=),
(93) 10} [1) = 10} 1),

(94) 1) |=) = 1) 1),
(95) 1) 1) = 1)),

in which tensor products are implicit. Here, the location (path) qubit is the control,
and the polarization qubit is the target. Conditional dynamics occurs because
the polarization of the photon flips, conditionally on its location. The quantum
controlled-NOT gate is a two-qubit gate, the two qubits, in this case, being path and
polarization qubits. The transformation Egs. (92) to (95) can also be characterized
as follows in terms of Boolean arithmetic (expressed in binary). If the horizontal
and vertical polarization states are chosen to encode Boolean states [0} and |1),
respectively, thus

(96) =) =10}, =11,

and also, the path states [0) and |1) encode the binary Boolean states |0) and |1),
respectively, then the transformations (92) to (95) can be written as follows:

(97) |0) [0) => |0} |0},
(98) |0} [1) = |0) [1),
(99) 11)10) = 1) |1),
(100) [1) 1) = [1)0).

Here, the first ket refers to a path state, the second ket refers to a polarization
state, and the order must be maintained. Equations (97) to (100) can be succinctly
represented as follows:

(101) ) [m) = |n} In @ m),

Y

|0 |07

[1)

Y

& 11

FIGURE 6. Quantum controlled-NOT gate.
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with n € {0,1}, m € {0,1}, and & denoting addition modulo 2. The operation in
Eq. (101) is called the controlled NOT. In matrix notation, Eqs. (92) to (95), ex-
pressing the output states in terms of the possible input states, may be represented
as follows:

107, 100 0Y /[0)~)
0, | _{o 100l om
(102) 1, |1oo o1 [] -
1, 001 0)\ mm

The matrix operator appearing in Eq. (102) is known as the quantum controlled-
NOT (or XOR) operator,

(163) b'¢

0
0
0
1

OO O =
(=R o ]
O = OO

Combinations of the controlled-NOT operation and arbitrary single-qubit rotations
can generate any unitary operation [4]. Although decoherence is not an issue for
one-time gate operation, in the case of gate implementations for possible use in
large-scale quantum computer circuits, the gate error rate must be extremely small
for successful computation.

7. SINGLE-PHOTON BALANCED MACH-ZEHNDER
INTERFEROMETER

Consider the succession of two Hadamard gates, depicted in Fig. 7. Here a single
photon is incident along path |0), path [1), or a superposition of both paths. One
has

(104) J0") = e 4 97V o) = 272 (1) 4 [0),

(105) Iln) — e—i1r/22—1/28—i1r/2 Il/) + 2—1/2ie—i1r/2 IOI) = 2—1/2 (_ |1I) + '01)) )
Next, substituting Egs. (88) and (89) in Eqs. (104) and (105), one obtains
(106)  Jo"y =272 (272 (o) — 1)) + 272 (J0) + 1)) = [0),

11) 10" 117

Fi1Gure 7. Single-photon Mach-Zehnder interferometer.
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(107) 1"y =272 (<273 (o) — (1)) + 272 (jo) + 1)) = 1)
Thus

(108) (}(1)";) - (I(l);)

It is also clear that this must be the case, since, according to Eq. (91), one has

(109) HH=2_1(} _11)(}_11)=((1)(1))

which is the identity. Thus, the succession of two Hadamard gates produces a
balanced single-photon Mach-Zehnder interferometer. If the photon enters along
path |0), it also exits in the state |0”) = |0). If it enters in |1}, it exits in |1).

8. QUBIT ENTANGLERS

By sandwiching a quantum controlled-NOT gate between two Hadamard gates,
one obtains an example of a two-qubit entangler, which entangles a location qubit
with a polarization qubit. The two-qubit entangler is shown in Fig. 8. If the input
state is |0) |[—), one can see from the figure, by taking into account the effect of the
first beamsplitter and the phase shifters, that

(110) 0"), =272 =),

(111) 1), = 27Y/2e7/2)|5) = 2712 |),

The index 1 merely distinguishes the particular choice of input state. Therefore,
because of the polarization rotator R, one has

(112) 0"), =272 |=),

(113) 1), =272 ).

Also, using Eqs. (88) and (89), one has

(114) "), =272 (jo"), +]1"),),

(115) 1), = 2712 (j0"), - [1"),).

Next, substituting Eqs. (112) and (113) in (114) and (115), one obtains
(116) 0"}, =271 (]=) + 1)),

FIGURE 8. Two-qubit entangler.
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(117) 117}, =271 (=) = 1)
The final state is then given by combining Eqgs. (116) and (117), namely,
(118)  [¢) = |07}y + (1) =270 (=) + 1)) [eo) + 277 (|) — 1)) |em) ,

where |eg) and |eyn) are unit kets corresponding to paths |0”’) and |1}, respect-
ively. Thus, in the case of the input state [0) | =), one has

(119) [0} [=) => [1) = 27" (leow) |=) + leon) [1) + lexm) | =2) — |exn) 1)) .
Thus, the qubit entangler converts the unentangled input state |0) |—) to a state in

which the polarization qubit (|—), [1)) is entangled with the path qubit (Jeg ), [e1m)).
Similarly, one obtains

(120)  [0) 1) ==> [¢h2) = 27" (leo) [=) + leow) [1) = lex) [=) + |ernr) 1)),
(121) (1) | =) = |ihs) = 27" (leo) | =) ~ leow) [1) + lexm) [=) + |ewn) |1)),

(122) 1) [1) = [9ha) = 27 (= leom) | =) + leon) [1) + Jeam) [=3) + e |1)),

for input states [0)|1), |1)|—), and |1) |1}, respectively. The input states have
become entangled states of path and polarization qubits.

In each case, Eqs. (119) to (122), the input state is separable (factorizable) into
two factors, each corresponding to a state of only one qubit. Each input state is a
single product of a path state with a polarization state. The input states are not
entangled.

The output states, however, are not factorizable: each is a superposition of
product states that is nonseparable into a single product of a path state and a
polarization state. The output states are entangled.

The four entangled states |t1), [42), |¥3), and |4) can be summarized in matrix
form as follows:

I’(/)l; 1 1 1 -1 Ieoln))ll—)))
¢2 | 1 1 -1 1 Ieom T
(123) W) [T 1 11 1 | Jen

[4) -11 1 1 lexm) 1)

Next consider, for example, two qubits, each of which can be in two states. Qubit
1 can be in the orthonormal states |0), or |1),, and qubit 2 can be in orthonormal
states |0), or |1),, where the subscripts on the kets distinguish the two qubits. The
general combined state of the two qubits can be written as

(124) [¥) = a|0), |0); + 810}, |1}, +7]1), 10), +6]1), [1), =

o2 ™R

(Here, tensor products are implicit, and the notation does not explicitly distinguish
between a ket and its representative [12].) Suppose that the initial combined state
is given by a simple product of states, namely,

(125) |%(0)) = 0), [0), =

[== o B Iy
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This state is not entangled. It is separable into two factors, each corresponding
to a state of one qubit. But then, as a result of prescribed controlled interactions
between the two particles (which, according to quantum mechanics, can be de-
scribed by some unitary operator U), the combined state of the two qubits, after a
prescribed period of time, will, in general, be

U Uiz Uiz Una 1
_ _ U21 U22 U23 U24 0

(126) WEN =UBWON=| 0. U Uss Uss o [’
Uy U Uz Upa 0

expressed in terms of the matrix elements of the unitary operator U. Next, if we
perform the matrix multiplication, Eq. (126) becomes

(127) W’(t)) =Un l0>1 |O>2 + U2 I0>1 Il)z + Us1 |1)1 lo)z +Ua |1>1 |1)2 .

The state is no longer separable. It is an entangled state. Any entanglement of
the two qubits can, in principle, be achieved by appropriate choice of interaction
Hamiltonian between the qubits, thereby determining the appropriate unitary oper-
ator U. Thus controlled interactions between two qubits, described by a prescribed
unitary operator U, produce a prescribed entangled state. A gubit entangler is an
implementation of this process.

More generally, it is now well known that controlled qubit entanglement can be
produced generically in at least three ways: (1) prescribed and controlled interac-
tions between the qubits, (2) entangled-particle sources, such as Einstein-Podolsky-
Rosen (EPR) pair sources, and (3) entanglement swapping. EPR-pair sources are
discussed in Sect. 9, and entanglement swapping is discussed in Sect. 13. Concern-
ing method (1), interactions of the qubits with the environment lead, of course, to
entanglement with the environment and decoherence, while interactions between
the qubits themselves in a controlled way can produce prescribed entanglements.
The latter is the basis for networks of quantum gates in a quantum computer.

9. EPR-PAIR SOURCES

Consider the production of entanglement, for example, in a particular EPR-pair
source [63,64]. This is a source of two Einstein-Podolsky-Rosen (EPR) correlated
particles. When an ultraviolet (UV) laser beam is incident on the nonlinear crystal
beta-barium borate, one of the photons may be absorbed, with small probability, by
interaction with the crystal atoms, and produce a pair of photons of lower frequency
(conserving energy). The two photons are emitted into the surface of two cones
whose axes (together with the path of the original UV photon) lie in the same
plane, and the axes of the two cones make equal and opposite angles with the path
of the UV photon (conserving momentum). This is parametric down-conversion. In
type II parametric down-conversion, one of the two photons produced has vertical
polarization (1), and the other has horizontal polarization (—). The device can be
configured with the two emission cones overlapping, so that the photons carry no
individual polarization. Along the two directions where the cones overlap, the state
of the two photons is in the entangled state

(128) ) = 271/ (I_)>1 IT)z + e IT)l I_))z) )

where the subscripts on the kets distinguish the two particles, and the parameter a
is a relative phase resulting from crystal birefringence. This is a general EPR-pair
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state. Here, each of the two particles represents a qubit by its two polarization
states. Thus, in the state represented by Eq. (128), the two polarization qubits are
entangled. Also, the two particles will generally have two separate locations. By
controlling the value of the parameter a in Eq. (128), one can produce various EPR-
pair entangled states. For EPR sources to be applied to quantum communication in
any practical way, the decoherence issue must be addressed: decoherence strongly
limits the storage time for EPR correlated states.

10. BELL-STATE SYNTHESIZER

The EPR-pair source also serves as an example of a Bell-state synthesizer. Using
a birefringent phase shifter, one can set the value of the relative phase parameter
a in the EPR-pair state of Eq. (128) to the values 0 and 7 [63]. Also, a half-wave
plate in one path can change horizontal to vertical polarization and vice versa. In
this way, the following four EPR Bell states can be produced:

(129) I"wb:t) =271/ (1= D2 £ 1=)2) s

(130) |65) =272 (1) =) £ D1 1)) -

The four states given by Eqs. (129) and (130) are widely known as Bell states. The
Bell states form a maximally entangled orthonormal basis for the Hilbert space
of the two qubits. Mazimal entanglement means that all information is carried
by both particles jointly, and no information is stored in an individual particle.
The parametric down-conversion EPR-pair source is thereby made into a Bell-state
source.

11. QUANTUM DENSE CODER

Classically, with two pennies, each having two possible states, head up or tail
up, one can encode two bits of information, represented by (H, H), (H, T), (T, H),
and (H, H). Here the state of one of the pennies is the first entry, and the state
of the other penny is the second entry. This allows four encodings, or log,4 =
2 bits. In quantwm dense coding [65], two entangled two-state systems are used
to encode information. It has been demonstrated experimentally [66] that, with
quantum dense coding, it is presently feasible to transmit one of three messages by
manipulating only one of two entangled qubits shared between a transmitter Bob
and a receiver Alice. In other words, by manipulating only one of two entangled
qubits, Bob can transmit log, 3 = 1.58 bits, namely a trit, to Alice.

In principle, however, one of four messages (two bits) could be transmitted by
manipulating only one of the qubits. With two photonic qubits, each having two
polarization states (vertical polarization represented by the ket |1), and horizontal
polarization represented by the ket |—)), the two bits can be encoded in entangled
superposition states, such as

(131) [¥) =272 (|=) I + 1) =) -

Here on the right-hand side, tensor products are implicit, and kets are taken to be
ordered with the first and second kets in each term representing the first and second
particles, respectively. An analogous entangled state would never be seen with two
pennies, because of quantum decoherence. The state |47}, along with three other
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states, forms a maximally entangled basis for two independent particles, the Bell
basis. The other three states are

(132) [v=) =272(-) 1) = 1D =),
(133) [g7) =272 (|=) =) + D 1)),
(134) [¢7) =272 (o) =) — I 1))

Equations (131) to (134) are the four Bell states, Eqgs. (129) and (130) with sup-
pressed indices, and with ket order distinguishing the two qubits. Maximal en-
tanglement between the two photons means that all information is carried by the
photons jointly, and no information is stored in any individual photon. Note that
for each of the four states, Eqs. (131) to (134), each photon is unpolarized by itself,
since it is equally likely to have horizontal or vertical polarization. Also, the states
are orthonormal; for example,

(135) (@Fle™) =27 (=] M+ A=) (=) =) = 1D D)) =0.

The symmetries of the entanglement are made more evident when we summarize
the four Bell basis states, Eqs. (131) to (134), as follows (as in Eqgs. (129) and
(130)):

(136) WE) =272 (|s) D) £ 1) |-)),
(137) |¢%) =272 (|) =) £ 1D 1))

With these four states, two bits of information can still be encoded. However, in the
encoding with entangled states, none of the qubits carries well-defined information.
For example, if the states |1*),|¢~),|¢T), and |#~) are chosen to encode messages
1,2, 3, and 4, respectively, then one can see directly from Eqs. (136) and (137) that
performing a local measurement of the polarization state of one of the two qubits
(which may be spatially separated) is not sufficient to determine the message. The
information is stored in the entanglement. It is encoded globally into relations
between the two qubits, since the two particles are generally spatially separated.
To obtain the information, one needs to know about the states of both qubits.

Although the four Bell states |¢*) and |¢*) can still encode only two bits of
information, the encoding can be accomplished by manipulation of only one of the
particles. Suppose Bob and Alice each share one of two EPR. particles produced
in the state |*), for example, by a Bell state source, as in the previous section.
Bob, who wishes to transmit a message to Alice, performs one out of four possible
unitary transformations on his particle alone, represented by the first ket in each
term in the state |)*). The four operators are

(1) the identity operator, for which

(138) [y — o),
(2) the polarization interchange (|1) <= |—)), for which
(139) [W*) — 272 (N N + 1) =) = [¢7),

(3) the polarization-dependent phase shift (e’ for |t} and e(®+7) for |—), where
o is some phase), for which

(140) ) — 272 (=™ ) 1) + € 1) |5)) = —e™ |3p7)
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(the factor of —e® is an unimportant overall phase factor), and, finally,
(4) the polarization-dependent phase shift (e’ for |1) and (@™ for |—»)) and
polarization interchange, for which

(141) [p) — 272 (= ) 1) + e [2) |) =€ [47)

(again, there is an irrelevant overall phase factor).

The above four unitary operations are commonly referred to as (1) the identity
operator, (2) the bit flip, (3) the phase shift, and (4) the combined phase shift/bit
flip, respectively. These four manipulations by Bob of his particle result in the four
orthogonal Bell states, which can represent four distinguishable messages: two bits
of information. The information capacity of the transmission channel is therefore
two bits, compared to the classical maximum of one bit. Alice must, of course,
measure the Bell state to complete the information transfer. To do this, she uses a
Bell state analyzer, as discussed in the following section.

A schematic diagram of a quantum dense coder is shown in Fig. 9. In the figure,
BSS designates the Bell-state source of two entangled photons to be shared by Bob
and Alice. BSE designates the Bell-state encoder with which Bob performs one
of the four operations on his photon, thereby projecting the pair into a particular
Bell state. He next sends the photon to Alice, who measures the state of the pair
using the Bell-state analyzer BSA. Bob can thus, in principle, send two bits of
information to Alice by manipulating only one of the two shared EPR photons.

Thus, dense quantum coding can, in principle, double the transmission channel
information capacity. However, to date, existing Bell state analyzers can measure
only three of the four Bell states, and therefore Alice can read only three different
messages (1 trit). Measurement of all four Bell states awaits the development of a
gate-enabling robust nonlinear interaction between two qubits [67].

Nonlinear response can be very effective for strong fields consisting of many
photons [68,69]; however, at the few-photon level, the fields are far too weak for
nonlinear response to be exploited. For example, combining two photons condi-
tionally in a nonlinear crystal has an efficiency that is far too low. Several possible
approaches to developing the required gate are being pursued, including cooperative
two-photon interactions with pairs of atoms in a medium [70-72j and cavity-QED
techniques [73-75]. The development of a robust two-qubit gate is also needed for
the development of quantum computers.

Bob Alice

2 bits i
=—! BSE > BSA =225,

()

FIGURE 9. Quantum dense coder.
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Quantum decoherence is an impediment to the useful implementation of dense
coding, because it limits transmission range and state storage time. However,
quantum error correction methods may be implemented to change this (see Sect. 21).

12. BELL-STATE ANALYZER

The Bell-state analyzer addressed here exploits the quantum statistics of two
qubits interacting with a beamsplitter [67,76]. Note first that the state |¢~),
Eq. (132), is antisymmetric in the interchange of the two particles:

(142) Jp7) =272 (=) 1) = 1D =) — 272 (I =) — =) D) = — |7 .

The other three Bell states, Eqs. (131), (133), and (134), are symmetric under
particle interchange:

(143) gty =22 (o) D)+ D =) — 27210 =) + =) 1) = |9t
and clearly,
(144) |¢%) =272 (|=) ) £ D) 1) — |6F).

The connection between spin and statistics [77,78] is that (1) half-integer spin
particles are fermions and obey Fermi-Dirac statistics: that is, their total wave
function is completely antisymmetric under interchange of particles; and (2) integer
spin particles are bosons and obey Bose-Einstein statistics: that is, their total wave
function is completely symmetric under interchange of the particles. Photons have
spin-one, namely integer spin, and are therefore bosons and obey Bose-Einstein
statistics. Therefore, the two-photon wave function must be totally symmetric.
The total wave function has a spatial part and a spin part (polarization corresponds
to spin [5]). It follows that for the two photons in the polarization Bell state
|}, which, according to Eq. (142), is antisymmetric, the spatial part of the wave
function must also be antisymmetric, so that the total wave function is completely
symmetric. To see this, note that under particle interchange, one has, letting |¥ 4)
denote the antisymmetric spatial part of the wave function,

(145) 1A} [$7) — (= 1Za)(=[97)) = [Ta) [¥7).

Similarly, for the two photons in the symmetric polarization states |¢*) or |¢%) , the
spatial part of the wave function must also be symmetric, for under the interchange,
one has, letting |¥s) denote the symmetric spatial part of the wave function,

(146) [s) lpt) — (+]Ts)) (+ |¥)) = [¥s) [4),

(147) [Ws) |¢%) = (+|Ts)) (+ ¢%)) = [Ts) |¢F).

Next, consider two photons (see Fig. 10) incident from the left on a 50/50 beams-
plitter, serving as a partial Bell-state analyzer. The mode |1) represents the upper
path, and the mode |0) represents the lower path. Coincidence detection (desig-
nated by C in the figure) is performed at the two output ports of the beamsplitter.
If one could ignore statistics, then the mode state |1) |0) for the two particles, with
one particle in each spatial mode, could be expressed as

(148) [1)[0) = 27% [|1) |0) +|0) 1)} + 27 |1) [0) — [0} [1)] -

I have used a trivial algebraic identity to rewrite the function in terms of a symmet-
ric part and an antisymmetric part, corresponding to the first and second bracketed
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I1)

[0)
FI1cure 10. Bell-state analyzer.

terms in Eq. (148). However, depending on the symmetry of the polarization state
of the two photons, only the symmetric or the antisymmetric part of the two-photon
spatial-mode state can be nonvanishing. Thus, the possible normalized spatial-
mode states for the two photons incident from the left are either the normalized
symmetric state,

(149) [¥s) = 271/3(|1) jo) + {0) i1)),
or the normalized antisymmetric state,
(150) |9.4) = 271/2(11) |0) — |0} |1)).

Since the two-photon total wave function must be completely symmetric, the total
state, including both spatial and polarization parts, must be one of the following
four states:

(151) ) W), [W) [ Ta), |¢F)|¥s), |¢7)(¥s).

Only the second state, |1p~)|¥4), is antisymmetric in both its polarization and
spatial parts.

The beamsplitter does not affect the photon polarization state. Also, it can
be shown that for all three of the states involving the polarization-symmetric part
|¥s), both photons emerge together in only one of the exit ports of the beamsplitter
[67,79]; therefore, the coincidence detectors will not respond to those three states.
It is also true that the antisymmetric state |¥ 4) is an eigenstate of the beamsplitter
[67,80], which I demonstrate explicitly below. It follows that the beamsplitter can
discriminate the state |1)~) |¥ 4) from all the other states, since only that state
will register coincidences [67,80]. Furthermore, for j1y*), the two photons have
different polarizations, while for both |¢*) and |[¢~), both photons have the same
polarization state. Therefore, by performing polarization measurements, one can
decide whether the photons are in the state |)*) or one of the remaining states
|¢+) or |¢~). To complete the Bell-state analysis, a robust optical element involving
nonlinear interactions is needed (see the previous section) [70-72,73].

It is appropriate to independently demonstrate that the spatially antisymmetric
state |¥ 4) is, in fact, an eigenstate of the beamsplitter. The beamsplitter does not
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change this state, except for an irrelevant overall phase factor. To see this, one can
use the following vector representation of |¥4), Eq. (150), in terms of vectors (})
and ((1’), representing spatial modes |1) and |0), respectively; thus

(152) e =2 [(0) (1)~ (1) ()]

Tensor products are again implicit here. A general state

59 () =<(o) ++()

incident on the beamsplitter, can be depicted as in Fig. 11. Since the probability
amplitude [9-12] that a photon enters the beamsplitter on the upper left is a, and
that it enters on the lower left is b, then the amplitude that it exits on the upper
right is 271/24a + 21/2p (the factor of 27%/2 is due to the 50/50 beamsplitter, and
the factor of 7 is due to the reflection [13-15]). Analogously, the amplitude that the
photon exits on the lower right is 272/2g 4+ 271/2jb. The exit state can therefore be
represented by

-1/2 ia+b _9-1/2 i 1 a
(154) 2 (a+ib 2 1 b )

Thus, the effect of the beamsplitter is represented by the operator

o201
(155) M=2 (1 z)

The operator M is unitary:

(156) MMfzz—l(i 1)('1’ _li)=(; (1])=1.

It then follows that the effect of the beamsplitter on the spatially antisymmetric
state of two photons, Eq. (152), is faithfully represented by

(167) [Wa) = MM ,),

1 .
a ﬁ (ia+b)

b _‘j—%‘{aﬂ'b)

FIGURE 11. Beamsplitter input-output modes.
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in which |¥,) is the output state, the first operator M represents the beamsplitter
acting on the first photon appearing in the expression for the Bell state, and the
second operator M represents the same beamsplitter acting on the second photon
(tensor products are again implicit). Thus, using Egs. (155), (1562), and (157), one
has

= 2—1/2(:' )7 (3 1) 660 - () 6)
= =) ()-()0)]
= 7o)+ ()] 1) =)
) =G Q)+ ()P
= 1)) - () o)

(158) = —|¥,).
One concludes that, in fact, the spatially antisymmetric state |¥ ,) is an eigenstate
of the beamsplitter, as already stated. Bell state analyzers can be particularly
useful in entanglement swappers.

13. ENTANGLEMENT SWAPPERS

With an entanglement swapper, two well-separated particles that have never
interacted can become entangled. This entanglement swapping [81-85,67], has been
accomplished experimentally [86]. Two separate EPR-pair down-conversion sources
were used to produce two separate pairs of entangled photons, and a Bell-state
measurement was then performed on two of the photons, one from each of the
separate entangled pairs. The Bell-state measurement results in projecting the
remaining two photons (one from each pair), which have never interacted, into
an entangled state. The device is depicted schematically in Fig. 12. EPR; and
EPR; designate the two separate EPR-pair down-conversion sources that produce
two separate EPR pairs of photons, (1, 2) and (3, 4). BSM designates the Bell-
state measurement performed on photons 2 and 3. The Bell-state measurement of
photons 2 and 3 results in the entanglement of photons 1 and 4, which have never
interacted. Thus, entanglement can occur by entanglement swapping, and not only
by a common source, or by interaction in the past.

Proceeding then to examine entanglement in more detail, assume the two EPR-
pair sources EPR; and EPR; each produce a pair of particles in the antisymmetric
polarization state given by the Bell state [}, Eq. (132):

(159) ), =272 (120 1D, = 1D 1=)2),

(160) [¥7 )30 = 272 (19)5 1M — M5 1 =)0) -

Here the states are labeled explicitly with subscripts explicitly designating the
particles, so that one can ignore the order of the kets, for ease of algebraic analysis.
The total combined state of all four photons is then given by [86]

(161) |9}1234 = |¢_>12 i¢_>34'
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(=)

@)

FIGUre 12. Entanglement swapper.

Although each separate pair is separately entangled, neither pair is entangled with
the other pair. However, Eq. (161) can also be rewritten as follows:

(162)
|¢)1234 = 2—1 (,¢+>14 |¢+>23 - |¢_)14 |,¢’_>23 - |¢+>14 I¢+>23 + |¢_>14 |¢—>23)

in terms of the Bell states %), [¥%),s, [¢F)14, and |¢%),; (see Egs. (131) to
(134)), where

(163) [95) 0 =272 (=) N £ 1Dy 12)0)
(164) [95) 05 =272 (12); 115 £ 1)z 1-)s) s
(165) 65010 = 272 (= [=2)a £ D1 1))
(166) [65)55 = 27172 (1) |2)g £ 13 1)) -

(Equation (162) corrects the sign errors in Eq. (3) in Ref. 86.) To see that Eq. (162)
is equivalent to Eq. (161) above, first note, using Eqs. (163) to (166), that

[9E) 10 [65)s = 270 () el =) s £ 1) D)2 1204

(167) [ 12012 D + 1D =) D)2 12)3)
and

l¢i>14 |¢i>23 = 271 (|=) ) [ 2)a I )s £ |2) [=)4 )2 )3
(168) 1 e l=2)a 125 + 1)1 D 1) 11)s) -

Next, substituting Eqgs. (167) and (168) in Eq. (162), one obtains

[¥)1236 = 271(12) D Da [2)g + 11y ()4 1) 115
(169) = =) 2 D2 iDa = D1 e 2)2 [ )s) -
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By reordering terms and factors within each term, Eq. (169) becomes

[W)isse = 27H(12)1 M2 [2)a 1)y — 21 D)5 115 1—2)y
(170) - IT)1 l"’)z I_))s IT)4 + |T)1 I_)>2 IT)3 I'+)4) g
However, Eq. (170) factors directly into the following form:

(171)  [Whase = 277021 D2 = D1 12)2) (=)3 1 = D3 1=)0) -

Finally, substituting Eqs. (159) and (160) in Eq. (171), one obtains Eq. (161). Thus,
in fact, Eq. (162) is true.

Next, from Eq. (162), it is evident that a Bell-state projective measurement of
photons 2 and 3 also projects photons 1 and 4 onto a Bell state. Thus, for example,
if the Bell-state projective measurement operator [thF),, 5, (1| for the Bell state
[¢¥7),; acts on [¢),,,, in Eq. (162), one obtains

(172) (W7 )23 2 (¥ [) 1)1230 = 271 |97 )y, [ )5

because of the orthonormality of the Bell states (see Eq. (135), for example). Ana-
logously, one obtains

(173) (97225 23071 Worage = =27 [97)1, 97 )5
(174) ('¢i>23 23<¢i|) |¢)1234 = :':2—1 |¢i>14 I¢i>23 t

Note that in each case both projected Bell states are the same as the measured Bell
state. That is, if the result of the Bell state measurement of particles 2 and 3 is
|$9£),5 OF [#%),4, then the state of particles 1 and 4 is projected onto the entangled
states |¢*),, or [¢F),,, respectively. Also, in every case photons 1 and 4 become
entangled, even though they never interacted.

In the experimental demonstration [86], an ultraviolet pulse first passed through
a nonlinear crystal to produce the two separate entangled pairs of photons (1, 2)
and (3, 4). A beamsplitter, phase plates, and coincidence detectors were used to
perform the Bell-state measurement of photons 2 and 3. The Bell-state analyzer,
for analysis of photons 1 and 4, consisted of a polarizing beamsplitter, phase plates,
polarizer, narrow bandwidth filters, and coincidence detectors.

Entanglement swapping has also been generalized to manipulate entangled mul-
tiparticle systems [84,85]. Entangled states of many particles can, in principle,
be generated in a controlled way. Potential applications include cryptographic
conferencing, multiparticle generalizations of superdense coders, message reading
from more than one source by making only one measurement, the construction of
a quantum telephone exchange, the speeding up of the distribution of entangled
particles, and series purification [84,85]. Decoherence amelioration will also be es-
sential to further practical development of entanglement swappers.

14. QUANTUM TELEPORTER

Another exciting application of entanglement is the quantum teleporter. In
quantum teleportation [82,83], an unknown quantum state can be disassembled by
a sender (Alice) into ordinary classical information, which can then be used together
with an EPR pair of particles, shared by both Alice and a receiver (Bob), to enable
Bob to reconstruct the initial unknown state. To accomplish this, Alice must make
a joint measurement on her EPR particle, together with the unknown quantum
system, which of course destroys the unknown quantum state. She next sends Bob
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the result of her measurement over a classical communication channel. With this
information, Bob can then convert the state of his EPR particle into an exact replica
of the initial unknown state.

A quantum teleporter is depicted schematically in Fig. 13. EPR designates a
down-conversion source producing an EPR pair of photons, 2 and 3, shared by Alice
and Bob, respectively. Alice first performs a Bell-state measurement, designated by
BSM, on particle 1, whose state |x), is unknown, together with her EPR photon 2.
The measurement randomly projects the two-particle state onto any one of four Bell
states. She gains no information about any of the particles, but she does obtain one
of four possible joint states. She next transmits the corresponding two classical bits
of information to Bob, informing him which of four unitary operations (designated
U in the figure) Bob must perform to transform the state of his EPR particle 3 into
the original unknown state |x),. Bob thereby has a teleported reappearance of the
original state |x);. Quantum teleportation has been experimentally demonstrated
by several groups [87-90].

Let us examine quantum teleportation in more detail. Assume the EPR pair of
photons 2 and 3 is in the antisymmetric two-particle Bell state [¢/~),,, Eq. (164),
namely,

(175) W) ps = 272 (1), 113 — g 1=)s) -

(The states are labeled here explicitly with subscripts, designating the particles.)
Denote the unknown state of Alice’s particle 1 (also a photon) by

(176) IX)1 = al=)y + 5|1,

with unknown complex coefficients a and b. The combined state of Alice’s unknown
state and the EPR pair is then given by

(177) [%}123 = I¢_>z3 Ixh = 271/ (172115 = [T [2)3) (a| =), +B[1),).

Next, expanding the state |1),,5 in terms of the Bell-state basis for particles 1 and
2, namely, [¢*),, and |¢*),, (see Egs. (129) and (130)), one obtains

[¥)125 = I‘/’_)m 12<¢-|¢>123 + |¢+>12 12<¢+|'/’>123

(178) + |¢_>12 12<¢_|"/’>123 + ,¢+>12 12(¢+[¢>123 .
Alice Bob
l:l)1’ BSM 2 bits J U |"3)3 >
2 3

&)

FiGure 13. Quantum teleporter.
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Next, using Eqgs. (129), (130), and (177), one obtains
12{¥ ™ [%), 4 277 (1(=] 2(t — 1 {1 2(=])
X (|22 13 = N2 12)3) (a|=); +0[1),)
(179) = 271 (=a|=); = b)),

12(%F )5 271 (o= 2N+ 1 (M 2(=))
X (|=)2 113 = M [2)) (@] =)y +0[1),)
(180) = 271 (=a|=); +b|1),),

12087 [¥) s = 271 (=] 2(=] = 1 (] 2(1])
X (=) 13 = 1)z |=)3) (a| =), + 0 I1),)
(181) = 271 (a|t); +b]|=),),

12(87[¥) 150 = 271 ((=] 2]+ 1 (1] 2(1])
X (i=)2 s — 12 12)3) (@] =)y +81),)
(182) = 27 (a|t); —b|=),)-
Then, substituting Eqgs. (179) to (182) in Eq. (178), one obtains
[Whzs = 27 [[¥7)y, (mal=)s —bi)s) + [¥), (—al=)s +511),)
(183) + |67 )y, (B=)s+a[t)g) + |61, (—01=); +at))]-
The four Bell-state measurement outcomes are equally likely. This follows, since
the probabilities of Bell states |¢*),, are
(184) 47 |—a|)y 2 biM)[* = 47 (Jaf + o) = 1/4,

assuming that state [x),, Eq. (176), is normalized to unity. Similarly, the probab-
ilities of Bell states |¢¥),, are

(185) 47 b)Y +alt)l’ =472 (jo + |af”) = 1/4.

Each has a probability of 1/4. After Alice’s measurement, Bob’s EPR particle 3
will have been projected into one of the four pure-state superpositions in Eq. (183),
according to the Bell-state measurement outcome. Each of the possible resulting
states of Bob’s EPR particle 3 is simply related to the initial state |x),. The state
Ix);, given by Eq. (176), can be represented by the vector

(186) = ()

in a basis in which vertical and horizontal polarizations are represented by the basis
vectors

(187) m=() =)

respectively. If Bob’s measurement outcome is [¢)~),,, then the state of Bob’s EPR
particle 3, according to Eq. (183), is given by

(185) )5 = —al)s - ol == 7).
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which is the same as Alice’s initial state |x),, except for an irrelevant phase factor
(¢ = —1). If Bob’s measurement outcome is [¢*),,, then the state of Bob’s EPR
particle 3, according to Eq. (183), is

(189) [2)s = —al=2)g +b[1); = ( —01 (1) ) ( b )

We can convert this state to a replica of Alice’s initial state |x), by applying the
unitary operator

as0) n=(30) - (3 %)

since U |2); = (3). I note in passing that the operator Eq. (190) is proportional to
the operator HN H, since, according to Eqs. (79), (91), ard (190), one has

(191)

_ _1/2 1 ]. O 1 _1/2 1 1 — 1 0 _
HNH =2 (1—1)(10 2 1 -1 0o -1 )=

If Bob’s measurement outcome is [¢™),,, then the state of Bob’s EPR particle 3,
according to Eq. (183), is given by

(192) B =pb+ate= (5 §) (5)-

This state can be converted to a replica of Alice’s initial state | X); by the application
of the unitary operator

-1
(0 1\ (01
(193) U3—(10) —(10),
since Us 3); = (}). Note that the operator (193) is the NOT operator, Eq. (79).

Finally, if Bob’s measurement outcome is |¢t),,, then the state of Bob’s EPR
particle 3, according to Eq. (183), is given by

(10) 0, ==slns+ait = 3H) (5):

which Bob can convert to a replica of Alice’s initial state |x), by applying the
unitary operator

0 -1\ 0 1

(195) U4_(1 0) —(_10),

since Uy [4); = (§). Bob can use a suitable combination of half-wave plates to
perform the unitary operations Uz, Us, and Us. In each case an accurate teleport-
ation is obtained if Alice communicates (classically) to Bob the classical outcome
of her measurement, after which Bob applies the required operation with his wave
plates to transform the state of his EPR photon into a replica of Alice’s original
state |x),. The state of qubit |x),, Eq. (176), has been transferred to the state
IX)s = a|=); + b[t);. Alice is left with particles 1 and 2 in one Bell state [¢=),,
or |¢*),,, and she acquires no information on the original state [x);. Although a
perfect copy of the original qubit can be created in quantum teleportation, the ori-
ginal qubit is completely destroyed. This is compatible with the fact that arbitrary
quantum states cannot be cloned [32,33]. In recent teleportation experiments, the
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entire quadrature phase amplitude of a light beam was teleported [89)], instead of
just discrete polarization states.

Quantum teleportation is in principle possible even if Alice and Bob lose track of
each other’s location after sharing their EPR pair, provided Alice can broadcast the
requisite classical information, and provided the EPR particle states are sufficiently
long lived. However, decoherence severely limits the storage time of any qubits.
Thus, decoherence is a critical issue for the development of practical quantum
teleporters. It is presently not possible to store separated EPR particles for a
sufficiently long period of time, because of decoherence. For example, the effects
of attenuation and noise on a single photon, sent through an optical fiber, lead to
coherence lengths ~10 km and decoherence times of order (10 km)/(3 x10® m/s)
~ 107° s. The implementation of error-correction methods (see Sect. 21) may,
however, lead to significant improvements.

15. QUANTUM COPIERS

According to the no-cloning theorem, arbitrary quantum states cannot be cloned
because of the linearity of quantum mechanics [32,33]. The implication is that one
cannot produce an exact copy of an arbitrary qubit. This does not mean, however,
that an approximate copy cannot be made. The function of one type of quantum
copier is to produce an approximate copy of a qubit that is as close to being an
exact copy as possible, and with the original qubit changed as little as possible in
the process. A number of types of quantum copiers have been considered in the
literature [91-104,59).

A universal copier is one that produces two identical copies whose quality is
independent of the input state [91,92]. The universal quantum copier must copy an
arbitrary pure state, which can be written in a chosen basis, {|0) eo 11 1)a, } as [96]

(196) [¥)ag = @0}, +B[1)g, »
for which a general parameterization of the coefficients is
(197) a =sinf e, B = cosé.

A universal quantum copier satisfies three basic requirements [92]:
(1) If the state of the original qubit at the output of the quantum copier is
denoted by the density operator p{>*"), and that of the quantum copy is p"*, one

requires that
(198) p‘(‘c:)ut) — pl(lti‘lt)'

(2) If the measure of distance d(py, p2) between two states with density operators
p1 and p is taken to be the square of the Hilbert-Schmidt norm, that is,

1

(199) d(p1,02) =Tx [(p1 - p2)’],
then the requirement that pure states should be copied equally well can be expressed
by
(200) A", o) =0, i=0,1,
where p.(,i‘.d) is the ideal density operator describing the input state, and C is a
constant, independent of the input state.

(3) Equation (200) should be minimized with respect to all unitary transforma-
tions within the Hilbert space of the two qubits and the quantum copier.
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It can be shown that the unitary transformation that implements the universal
quantum copier by satisfying requirements (1) to (3) is given by [92,96]

(201) 10)a 1@ = (3/2)7/210),, 10}, 1)y + 372 [+) 40, s
and

(202) gy 1@z = (3/2) 72 1), 10)a, Wy + 372 |H) g 0, M s
where

(203) [ agar = 272 (1), 10)a1 +10)4 [D)ay) -

Here, indices ao, a1, and z designate the original qubit, the copy, and the copier, re-
spectively. The copier has a two-dimensional state space with basis vectors 1), and
4}z, and |@), denotes the initial state of the copier. The implication of Egs. (201)
and (202) is that the copy contains 5/6 of the desired state and 1/6 undesired.

The universal quantum copier can be implemented with a network of simple
quantum logic gates [92,96]. Also, a quantum copier has been designed that pro-
duces multiple identical copies from one or more original qubits [96-99,59)].

In other work, it has been shown that, owing to residual correlations between
the copy and the quantum copier, quantum copying degrades entanglement [100]. A
quantum copier can also involve quantum teleportation schemes [101,102]. Quantum
copiers implementing a quality measure based on state distinguishability have also
been investigated [103,104). Decoherence is an obstacle to useful implementations
of quantum copying, because it limits the state storage time.

16. ALL-OPTICAL QUANTUM INFORMATION PROCESSORS

It is next appropriate to begin to address various possible qubit devices for
quantum computation. Consider first all-optical quantum information processors.
All-optical quantum computers are of two general types, depending on whether
nonlinear optical elements are employed. In a quantum computer based on linear
optics, the basic qubit consists of two path states of a single photon [105,106]. A
photon leaving an optical element, such as a beamsplitter with two exit ports, has
a propensity to exit along either path, so the photon becomes a two-path-state
system. The linear optical elements composing the device include beamsplitters,
mirrors, polarizers, wave plates, etc. The initial state of the device need only con-
sist of a single photon entering the device at a beamsplitter. All the necessary
quantum gates can be implemented (see Sect. 6). Even two-qubit gates such as the
controlled-NOT gate can be implemented. By cascading the number of beamsplit-
ters, locating one at each alternative path in a network of optical elements, we make
the device a multiple-qubit system. However, because of the resulting exponential
proliferation of optical elements needed to form a large number of path qubits, such
a linear-optical quantum computer is limited to a relatively small number of qubits.
The device is therefore limited to implementing small-scale quantum networks for
performing small quantum algorithms, such as those involved in simple quantum
error correction and quantum teleportation [105].

The second type of all-optical quantum computer is a multi-photon device em-
ploying nonlinear optical elements [107-109]. Nonlinear optical elements are needed
so that the state of one photonic qubit can control the state of another at certain
nodes in the network. The use of many photons circumvents the exponential cas-
cading required by large linear optical quantum computers. The problem with the
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use of traditional nonlinear optical elements for implementing conditional dynam-
ics, in which the state of one photon conditionally modulates the state of another,
is the huge nonlinear susceptibility required to produce the necessary phase shifts
at the two-photon level of intensity (see Sect. 11). Practical nonlinear photon gates
operating at the two-photon level of intensity are not presently available; however,
innovative approaches are currently under investigation. These involve mutual in-
teractions between two gate photons and atoms in a medium [70-72,110,111] or in
a QED cavity [73].

Although decoherence is not an obstacle to the development of a reasonably
small, special-purpose, all-optical quantum information processor, it would become
an issue in any attempt to scale up the device to include large numbers of optical
elements. Before considering other physical quantum computer implementations,
it is well to review the concept of a universal quantum computer.

17. UNIVERSAL QUANTUM COMPUTER

A universal quantum computer [112-116] ideally consists of a set of n qubits on
which the following operations can be performed: (1) each qubit can be initialized
in some state |0); (2) a universal quantum gate, or set of gates, can be applied to
any subset of qubits; (3) each qubit can be measured in the basis {|0),|1)}; and
(4) the qubits evolve only as a result of these transformations.

. In the network model [115], logic gates are applied sequentially. The logic gates
are typically implemented by interactions that can be turned on or off at appropriate
times.

A universal quantum gate is one that, when applied to different combinations of
qubits, can produce the same result as any other gate. Since all quantum systems
evolve according to the Schrédinger equation, and quantum evolution is unitary,
the set of all possible quantum gates must be such that all possible unitary trans-
formations on the n qubits of the computer can be generated. The controlled-NOT
gate and single-qubit rotations are universal, since any n x n unitary matrix can
be formed by combining two-qubit controlled-NOT operators and single-qubit ro-
tations. The controlled-NOT gate and rotation can be combined into a single
universal quantum gate, which is a conditional rotation [4,117-120]. The univer-
sal quantum computer can, in principle, simulate, by finite means, and arbitrarily
closely, any finitely realizable physical system. This is the quantum extension of
the Church-Turing principle [114-116]. The extended principle holds, since (1) the
state of any finite quantum system can be represented by a vector in Hilbert space,
and can therefore be precisely represented by a finite number of qubits; and (2) the
evolution of the state of any finite quantum system can be represented by a unitary
transformation, and can therefore be simulated on a quantum computer capable of
generating any unitary transformation with arbitrary precision.

It must be assumed that the tasks performed by the quantum computer are such
that the number of steps is predictable, or that the quantum computer can indicate
completion of a computation by means of a dedicated qubit not otherwise involved
in the computation. Otherwise, there are fundamental unavoidable obstacles to the
construction of a halt qubit to control task completion [121-123]. Also, possible con-
tradictions have recently been suggested between the Church-Turing principle and
the inclusion of unrestricted classes of quantum observables and unitary operators
[124].
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It must be emphasized that, as described above, the universal quantum computer
is an ideal theoretical construct that does not take into account imprecise gate op-
erations, quantum decoherence, imprecise measurements, and quantum error cor-
rection. Only with qualifications to the stated requirements might the prescription
for a universal quantum computer be implementable.

A quantum computer is not a closed system, and therefore the computational
degrees of freedom cannot evolve unitarily. Interactions between the computational
degrees of freedom and noncomputational degrees of freedom, both outside and in-
side the computer, will result in qubit decoherence, and consequent deterioration
of the qubit entanglenients necessary for successful computer operation. Inexact
tuning of quantum gates and structural inaccuracies will also result in erroneous
evolution of quantum states. Quantum error correction must therefore be imple-
mented (see Sect. 21).

18. QUANTUM SIMULATORS

A quantum computer can be used to simulate other quantum systems [125-
138]. Such a quantum computer is a quantum simulator. A quantum computer
needs at least n qubits to simulate a state vector in a 2"-dimensional Hilbert space.
It must implement unitary transformations in the 2"-dimensional Hilbert space,
and this will typically require an exponential number of elementary quantum logic
gates. The implication is that a quantum computer cannot efficiently simulate
every physical system. However, many physical systems can be simulated with
a quantum computer that could not, in practice, be simulated with a classical
computer because of intractability [125-134]. A computation is only tractable if
its complexity is such that the resources required to perform it do not increase
exponentially with the number of digits in the input. The time evolution of the
wave function of a quantum many-body system could be faithfully simulated on
a quantum computer [131-137]. Quantum chaos may also be efficiently calculated
on a quantum computer [138]. Ultimately, the simulation of quantum field theory
may also be possible on a large quantum computer [134]. However, presently, no
quantum simulator exists of sufficient scale to perform any interesting simulations
of quantum systems.

19. QUANTUM FACTORIZER

A strong incentive for attempts to develop practical quantum computers arises
from their possible use in speedily factoring very large numbers for cryptographic
applications. A quantum computer could be used to factor large L-digit numbers in
~L3 time compared to ~e(®L)**L** time for a classical computer [139-141). This
would exploit the coherence of the quantum wave function of a quantum register
implementing an array of qubits. To factor a number N, choose a number z at
random that is coprime with N. Use the quantum computer to calculate the order
r of z mod N; that is, to find r such that

(204) z" =1 mod N.
If r is even, then the greatest common divisor of (z’/2 £ 1) and N is a factor of

N, and can be determined with Euclid’s algorithm. For example, if N = 1295 and
z = 6, one has

(205) 6" =1mod 1295 = r =4,
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(206) 62 +1=36+1= {3537},

(207) 1295 =15.7-37.

A guantum factorizer would implement Shor’s quantum factoring algorithm to cal-
culate the order r [139-141] A number g having small prime factors is first chosen,

such that
(208) N? < g < 2N2.

By means of appropriate quantum gates, the qubits constituting the quantum re-
gister (see Sect. 20) can be manipulated to produce the state

q—1
(209) 1) =q72/2 " |a,0),
a=0

where |a,0) denotes the tensor-product state |a)|0). Next, an additional set of
quantum gates must be used to implement a unitary transformation of the state
[1) to produce the state
q—1
(210) 2) = q7/2 3 |a,2® mod N).
a=0
Here |a,z® mod N) denotes |a) |[z* mod N). Next, the state |1);) must be Fourier
transformed with the quantum computer to produce the state
g-1lg¢g-1 .
(211) lps) = g~ /2 Z Z *279m/4 \m 2% mod N).
m=0a=0
Both arguments of the superposition must be measured, resulting in {c, :z:’“} for
(212) m=¢, z°=2zF 0<k<r
Then, the probability of the result {c,z*} is

g—1

(213) P(C, a;k) = q_l/2 E ei21rac/q

6=0,z°=z* mod N

The probability is periodic in ¢ with period ¢/r and is sharply peaked at ¢ = pg/r
for integer p. Therefore, the period yields r after a few trial runs.

Note that the state |¢2) in Eq. (210) is a superposition of product states, and
cannot be expressed as a single-product state. It is entangled. Entanglement, in
addition to superposition, is an essential feature of quantum computation. The
performance of the operations leading from |¢;) in Eq. (209) to [+2) in Eq. (210),
for example, would exploit the massive quantum parallelism characteristic of a
quantum computer. Because the input [¢,) for large N is set up in a large su-
perposition of states, the quantum computer would carry out all the computations
for each value of a simultaneously. Although there are ¢ > N2 input qubits in
Eq. (209), there is only one output qubit, corresponding to the measured values
of Eq. (212). The computation must be repeated erough times to determine the
peaks of the probability distribution in ¢, Eq. (213).

It is necessary that the rate of decoherence be sufficiently low for the compu-
tation to be completed [140,142,143]. Although a quantum factorizer capable of
factoring a 250-digit number does not presently exist, if and when one does, the
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widespread cryptosystems relying on the difficulty of factoring large numbers will
be rendered insecure and obsolete. However, to date, not even a 5-digit number
has been factored with a quantum computer.

20. QUANTUM REGISTER

One of the main ingredients of any sizable quantum computer would be the
guantum register. A quantum register may be thought of as a row of N qubits. A
binary number,

N-1
(214) n= Z n2¥, np=0orl
k=0

can be stored in the quantum register, and is represented by a product state of the
N qubits, namely,

(215) [n) = [nn—1) Inn—2) - - - [n1} no) -

Here, tensor products are implicit, and the order of the kets corresponds to the
order of the qubits in the register. Each ket in the product corresponds to a single
qubit. A general state [¢) of the free quantum register is given by the N-qubit
entangled state,

2V
(216) W)=Y anln),

n=0
where the a, are complex numbers, and the sum is over all 2V possible product
Boolean states, Eq. (215), thereby forming a 2V-dimensional Hilbert space.

For example, a three-bit classical register can store only one of eight different
numbers, {000,001,010,011,100,101,110,111}, using a binary representation of num-
bers between 0 and 7. But a quantum register consisting of three qubits can store
up to eight numbers at the same time in a quantum superposition. The state of
the three-qubit quantum register is, in general, given by

[¥) = coon[0}]0)]0) + ooz [0) |0) |1) + cxo10 [0) [1) |0) + cxor1 |0) [1) 1)
(217) + a100 [1) [0} [0) + c201 [1) |0) [1) + @110 [1) |1} [0) + a1 [1) [1) [1).

This is a coherent superposition of the numbers from 0 to 7.

For the N-qubit quantum register, although measuring the register’s contents
will yield only one number, a quantum computation can effectively manipulate all
2V numbers at once. For example, if each qubit consists of two states of an atom,
tuned laser pulses can switch the electronic states so that an initial superposition
of 2V numbers will evolve into a different superposition. This evolution results in
massive parallelism, since each number in the superposition is affected.

To prepare a specific number in a quantum register, N elementary operations
must be performed. Each of the N qubits must be put in one of two states. N
elementary operations, which can be represented by unitary transformations on
each qubit, can prepare the register in a coherent superposition of 2 numbers, to
be stored in the register. This process can be seen as follows. One can represent
the Boolean states |0) and |1) by the vectors

(218) o=(3). w=3)-
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If, for example, the first qubit of a three-qubit register is in the state |0), then
applying the Hadamard operator H, Eq. (91), causes the state of the qubit to
become

o) mo=22(7 L) (§) =2 (]) =04,

which is an equally weighted superposition of Boolean states |0) and |1). The
Hadamard transform applied to each qubit of a three-qubit quantum register, each
initially in state |0), yields the state,

3
W) = H(Hm))=H|0)H|0)H|0)=2‘3/2(|0)+|1))(!0>+|1))(I0)+|1))
= 27%2(|0) + 1)) (|0} 0) + |0) |1) + 1) |0) + [1) [1))
= 27%2(]0)]0) [0) + 0) |0} |1) + |0) 1) [0} + [O) |1} |1)
(220) +11)[0)]0) + 1) [0} |1) + [1) [1) |0) + [1) |1} [1))

in which the order of the kets is preserved and corresponds to the order of the
qubits in the register. Next, using a notation for states representing numbers to
the base 10, that is,

221 [0 =010[0), [D=10)]0)|1), [2) = |0)[1)]0), [3) =0} I)]1),
[4)=11)[0}]0), [5) =[1}|0)[1), |6) ={1)[1}}0), |7) =[1)|1)!1),

one can rewrite Eq. (220) as
2°-1
(222) |9) =27%2(10) + 1) + [2) + |3) + |4) +[5) + [6) + 7)) =272 3 |n).
n=0
Thus, more generally, if an N-qubit register is initially in the state |0) |0) |0) ... |0),
one can apply the Hadamard operator H, Eq. (219), to each qubit, and the resulting
state of the register is an equally weighted superposition of all 2" numbers, namely,

N 2V_1
(223) )y =T[(H[0) =H|0)H|0)... H|0) =277/ 3" |n).

i=1 n=0
The N elementary operations generate a state containing all 2% possible numerical
values of the register. This provides a method for generating the state, Eq. (209),
in Shor’s quantum factoring algorithm. If the quantum register is prepared in such
a coherent superposition of numbers, and all subsequent computational transforma-
tions are unitary (preserving the superposition of states), then in each step the com-
putation is performed on each of the numbers in the superposition simultaneously.

21. QUANTUM ERROR CORRECTORS

Quantum error-correction methods may provide the means to successfully com-
bat decoherence in quantum computers and other qubit devices [144-176,83,116].
Quantum error correctors are implementations of these methods that involve quantum
circuits consisting of networks of quantum gates. The interaction of a qubit in a
general state,

(229) |¢) =al0) + /1),
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with its environment in state |e), results, in general, in the following entanglement
between the qubit and its environment [116,170]:

le)|#) = e} (a|0) +b]1)) = a(coo |eoo) |0) -+ co1 leoo) |1))
(225) +b (Clo lelo) I].) 4+ c11 |611) |0)) .

where |e;;) denote states of the environment, and ¢;; are complex coefficients that
depend on the environmental interactions with the qubit. Equivalently, Eq. (225)
can be rewritten as follows [116]:

(226) le)18) = (ler) I + lex) X + ey} Y +lez) Z) |¢)
where the operators {I, X,Y, Z} are defined by

(227) r=poi+ma=(g 7).
(228) x=zpai+mo=(] 5 )
(229) z=mol-mar=(5 %),
(230) Y=XZ=|1){0-10)(1] = ( (1) ‘01 )

The corresponding matrix representatives are also given in Egs. (227) to (230)
(these matrices can also be simply related to the Pauli spin matrices [36]). Note
that by completeness, I, in Eq. (227), is the identity operator, which corresponds
to the unit matrix. Also, the operator X is the NOT operator, Eq. (79), since in
matrix form one has

(281) X =[(m|Xln)] = [(m] (10} (1] + [1) (O]) n}] = (‘1’ })) = N.

Analogously, one obtains the matrix representatives shown for Z and Y in Egs. (229)
and (230), respectively. Also, in Eq. (226), the states |e;), |ex), |ey), and |ez) are
given by

(232) ler) = 27" (coo leoo) + c10 leso)) ,
(233) lex) = 27" (cor eor) + c11 lenn)),
(234) lev) = 27" (cor leo1) — e11 Jens)) ,
(235) lez) = 27" (coo leao) — €10 |€10)) -

Equation (226) represents three types of errors, corresponding to the operators X,
Y, and Z. The operator X represents a bit flip, since it interchanges the basis
states, thus

= (1)=(w)
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The operator Z represents a phase error, since it introduces a relative phase ™
=-1

en 2 (5)=(6 S)(5)-(5)

The operator Y = X Z represents a phase change together with a bit flip, since

0 0 -1 0 -1
v () =0 ) ()W)
To see that Eq. (226) is equivalent to Eq. (225), note that if we use Eqgs. (227) to
(230), (232) to (235), and Eq. (224),
le)l¢) = (le)I+lex) X +|ey)Y + ez) Z) |¢)
= 27" (coo [eoo) + c10 Je10)) (|0) (O] + [1) (1]) (2 |0) + B1))

+27 (cot leor) + cax leas)) (0) (1] +11) (0]) (a |0) + b[1))

+27" (co1 leor) — exa [eas)) (i1) (0] — [0) (1)) (a0) + 5]1))

+27* (coo |eao) = c10 [e10)) (10) (0] — 1) (1]) (a]0) + ]1))

= 27" (coo eoo) + c10 [e10)) (2 |0) + b (1))
+27" (co1 [eo1) + €11 le11)) (b]0) + a|1))
+27" (co1 lear) — e11 enn)) (=8 0) + a|1))
+27? (co0 |eoo) — c10 |e10)) (a0) — b]1))

(239) = a(coo leoo) |0) + cor leo1) 1)) + b (c1o le1o) 1) + c11 |e11) 0)) .

Thus Eq. {226) is equivalent to Eq. (225).

Suppose that a quantum computer manipulates k£ qubits in the general state
l¢x). Then add n — k qubits in the state |0) to the computer, so that there are n
qubits. Next, perform the encoding operation

(240) E(l¢)10)) = |¢&) »

which produces, in general, some entangled state |¢g) of all n qubits. Then let
noise affect all n qubits. The noise can be represented as a sum of error operators
M, where each M is a tensor product of n operators I,X,Y,Z, one acting on each
qubit. For example, if I operates on qubit 1, X on 2, Zon 3, X on4,Y on 5, X
on 6,Y on 7, and I on 8, this can be represented by the operator

(241) M =L X, 25 X4Ys XY 15 .

Then, general interactions between the n qubits and the environment produce the
general noisy state

(242) Wy = 3 lea) M, I65),

where each M is an operator involving products of the four operators I,X,Y,Z,
such that each of the n qubits is acted on by one of them. Next, add another
n — k ancilla qubits, prepared in the state [0),. For any encoding FE, there is some
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operator A, called the syndrome extraction operator, which identifies the type of
corrected error, namely [116],

(243) A (M, |¢8)|0),) = (M; |¢E)) |s), VM, € S,

where S is the set of correctable errors and depends on the encoding. Here, the
symbol s in [s}, is a binary number that identifies the error operator M, considered,
and the states |s), are mutually orthogonal. For the simple case that the general
noise state |¢) v, Eq. (242), contains only M, € S, the joint state of the n nonancilla
qubits, environment, and ancilla (following the syndrome extraction) is given by

(244)
[P ne = Al [0), = A [(Z les) M, I¢E)) IO),,J = les) (M |¢E)) |s), -

If the ancilla state is measured with the measurement operator |s), ,(s|, then

(9)aalsD [W)va = Is)aolslD_ lew) (M [65)) |'),
= I8), D lew) (My |$5)) Gaer

(245) les) (M |6E)) 15) 5

that is, the entire state collapses into |e;) (M, |¢z)) |s}, for a particular s. Thus,
the measurement reveals the value s, thereby determining the error operator M,
(s is the error syndrome).

Next, if the operator M1 is applied to the measured state by means of various
quantum gates XY, or Z, there results

(246) M (s), o (sl [¥)na) = M7 [lea) (Mo |6E)) 5)a] = les) |68) [} »

resulting in the noise-free state |¢g). The state |e,) of the environment, appearing
here, is of no interest, and the ancilla state |s), can be put back in state |0), and
used again. If the noise in |¢) v, Eq. (242), contains errors M, that are not in the
correctable set S, then the probability must be large that when the syndrome is
extracted, the state collapses onto a correctable state.

The error-correction procedure must be such that the encoding operation E and
the extraction operation A are such that the set .S of correctable errors includes
all likely errors. If uncorrelated stochastic noise is assumed, for which the effect
on a qubit at different times is uncorrelated (and the effect on different qubits is
uncorrelated also), then all possible error operators can be categorized in terms of
their likelihood. Those affecting fewer qubits are more likely. If a quantum error-
correcting code is such that all errors affecting up to ¢ qubits are correctable, then
the code is a t-error correcting code [147,148,151,154,83].

Errors can also occur in the ancilla, quantum gates, and measurements. Methods
have been discovered by which the error correction suppresses more noise than it
produces [156,158,168,170,175). Error-correcting codes may require an extremely
large overhead in terms of the numbers of qubits (required for sufficient redundancy
to recover from errors) and gates (required to process the redundantly encoded data
and to diagnose and reverse errors). The error probability per qubit per gate must
be very small (below the accuracy threshold) if the error correction is to succeed
for arbitrarily long computations [161-163,165]. The requirements are formidable
for reliable quantum computing using such fault-tolerant quantum error-correcting
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codes [160,171]. Furthermore, quantum error-correcting codes usually assume that
errors in distant qubits are, at most, weakly correlated, and the codes are inadequate
to deal with strongly correlated errors involving many qubits [171].

Note that much simpler quantum error-correction methods can be used if enough
is known about the sources of noise [177,172,173]. Several passive error-prevention
schemes have been proposed, in which the encoding occurs within subspaces that
do not decohere because of symmetry properties [178-181]. It has been argued
[181], on the basis of a semigroup description of quantum decoherence [182,183],
that error-free quantum computation is possible in decoherence-free subspaces. The
evolution of the computational degrees of freedom, which form a subspace of the
total Hilbert space describing the quantum dynamics of the qubit device and its
environment, is nonunitary, and is described by a semigroup. The decoherence-
free subspaces are spaces spanned by states annihilated by all error generators
(the operators X, Y, and Z in Eq. (226) are error generators). Also, various
methods of decoherence control are currently under investigation. These include
the application of feedback [184,185] and of external controllable interactions [186—
189]. It is argued that the effects of qubit-environment interactions can be removed
by suitable decoupling perturbations acting on the qubit device over time scales
comparable to the correlation time of the environment [187-189).

22. QUANTUM COMPUTERS

I proceed to discuss possible quantum computer implementations that are cur-
rently under development [114-116,142,190-195]. In the ion-trap quantum com-
puter [196], a one-dimensional lattice of identical ions is stored and laser cooled in
a linear Paul trap (radio-frequency (rf) quadrupole trap) [197-200,75]. The linear
array of ions acts as a quantum register (see previous section). The rf trap po-
tential strongly confines the ions radially about the trap axis, and an electrostatic
potential causes the ions to oscillate along the trap axis in an effective harmonic
potential. Laser cooling results in localization of the ions along the trap axis, with
spacing determined by Coulomb repulsion and the confining axial potential. The
lowest frequency mode of collective oscillation of the ions is the axial center-of-mass
mode, in which all the ions oscillate with the same phase together. Each of the
trapped ions acts as a qubit, in which the two pertinent states are the electronic
ground state and a long-lived excited state. By means of coherent interaction of
a precisely controlled laser pulse with any one of the ions in a standing-wave con-
figuration, one can manipulate the ion’s electronic state and the quantum state
of the collective center of mass mode of the oscillator. The center of mass mode
can then be used as a bus, quantum dynamically connecting the qubits, to im-
plement the necessary quantum logic gates. The general state of the line of ions
that the quantum register comprises is an entangled linear superposition of their
states. A completed computation can be read out by a quantum jump measure-
ment technique [196]. Experimental demonstration of the ion-trap approach began
with state preparation, quantum gates, and measurement for a single trapped ion
[201]. Since then, a number of experimental and theoretical issues regarding the
ion-trap approach to quantum computation have been explored [202-229,116,85].
Presently, the main experimental difficulty in implementing this approach is cool-
ing the ions to the ground state in the trap. The primary source of decoherence is
apparently the heating due to coupling between the ions and noise voltages in the
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trap electrodes [204,205). In the near term, it is contemplated that 100 quantum
gate operations could be applied to a few ions [116]. It is, however, very question-
able that sufficient storage capacity and coherence will ever be achieved to enable
factorization of hundred-digit numbers by the trapped-ion approach [85,227-229].
Also, the speed of an ion-trap quantum computer would apparently be limited by
the frequencies of vibrational modes in the trap.

Another popular approach to the development of a quantum computer is provided
by cavity quantum electrodynamics (QED). In the cavity QED [230-233] approach,
a number of neutral atoms are trapped inside a high-finesse optical cavity [234].
Electronic states of the atom act as qubits to store information. The atoms in the
cavity interact with a quantized mode of the cavity. The separations between the
atoms are much greater than the wavelength of the cavity mode, and the atoms
can interact individually with laser pulses. This permits sequences of operations
between two qubits and the implementation, in principle, of an entire quantum
network. The qubits consist of ground-state levels of the trapped atoms. Quantum
gates can be implemented by the atoms being coupled to individual laser pulses
and entangled by exchange of a cavity photon. Pulsed lasers can be used to drive
transitions in one atom conditionally on the internal states of another atom. Also,
the polarization states of a photon can serve as a qubit. An atom trapped in the
cavity can serve as an effective nonlinear medium to mediate interactions between
two photons, and thereby implement a two-photon quantum gate, in which the po-
larization state of one photon alters the phase of the other photon [73,235]. Letting
|1); and |r}; denote left and right circular polarization states of photon i (i = 1,2),
one has, effectively,

(247) D1 18y = 11y 1D

(248) [y Ir)y = €2 |1y |r),
(249) )y 1By = €t |r); 10),,
(250) )y Ir)y = 01948 ) ),

where ¢, and ¢ are differential phases between the two polarization states, and A
is the conditional phase shift. The transformations, Eqs. (247) to (250), are accom-
plished first by one photon being stored in the cavity, in which the right circular
polarization state couples strongly to the atom, but the left circular polarization
state does not. Next, another photon traverses the cavity, also interacting pref-
erentially in one polarization state with the atom, and acquiring the conditional
phase shift only if the photons are in the right circular polarization state. Thus,
the phase shift is conditional on the polarization state of both photons; the result is
a two-qubit quantum logic gate. The gate exploits the extremely large optical non-
linearities that are achievable in cavity QED. The cavity operates in a pioneering
parameter regime, in which [73]

(251) k> (g*/k) >,

where « is the cavity-field damping rate, g is the dipole coupling rate of the atom
to the cavity, and v is the transverse atomic decay rate to noncavity modes. Un-
der these conditions, the coherent coupling of the atom to the cavity mode (at

rate g2/x) dominates incoherent emission into free space (at rate ). This enables
strong coupling of a single atom to the cavity mode, allowing efficient transfer
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of electromagnetic fields from input to output channels (at rate x). Conditional
dynamics at the single quantum level has also been achieved with single atoms in-
teracting with very weak microwave fields in superconducting cavities [74]. Atomic
wave function phase shifts were produced by microwave fields with, on average,
much less than one photon in the cavity. In related work, a quantum memory
was implemented, in which the quantum information carried by a two-level atom
was transferred to a cavity and subsequently to another atom [236]. Within the
same framework, a methodology was developed for the construction of arbitrary
quantum computational networks with all the necessary quantum gates to perform
all quantum logic operations [237,238]. In cavity QED, sources of decoherence in-
clude spontaneous emission from excited states of atoms and cavity decay during
gate operation. Maintaining coherence between multiple cavities is problematic.
Also, the trapping and localization of atoms inside cavities present formidable dif-
ficulties. Possible scaling up of the cavity-QED approaches to more than several
qubits remains to be accomplished and poses serious problems that may limit the
practical utility of cavity-QED quantum computers to special-purpose, small-scale
quantum computations (for use in quantum communication, for example).

Cavity QED is also being implemented in the development of possible quantum
computer communication networks. In the cavity-QED approach to quantum in-
formation processing, both the states of atoms confined in cavities and the states
of photons interacting with the atoms may serve as qubits to store and trans-
fer quantum information. Although the difficulties in the successful trapping and
localization of atoms inside high-finesse optical cavities are considerable (possibly
making the development of large-scale universal quantum computers based on the
cavity-QED concept an unattainable goal), the development of small-scale, special-
purpose quantum information processors involving limited numbers of trapped
atoms will likely be possible. For example, the cavity-QED paradigm may provide
a practical approach to the development of controlled single-photon sources [239],
the synthesis of entangled states {240], and quantum teleportation between cavit-
ies [241]. Both photonic and atomic qubits may be exploited with the cavity-QED
paradigm, in the form of quantum information networks that enable the implement-
ation of quantum communication protocols and distributed quantum computation
[242-246]. Multiple atom-~cavity systems located at distant network nodes may
be interconnected with optical fibers, or perhaps even use free-space transmission.
Analysis has been performed of basic network operations, including local quantum
information processing, quantum-state transmission between network nodes, and
quantum entanglement distribution [242-248]. Ideal transmission may be permit-
ted after a finite number of trials, without disturbing the quantum information.
Possible sources of error include absorption of photons in the optical fibers and
cavity mirrors, cavity and laser design errors, and spontaneous emission from ex-
cited states.

A recent proof of principle of quantum computation has been accomplished by
another approach, which makes innovative use of established nuclear magnetic res-
onance (NMR) technology. NMR [249,250] can be used as the basis for quantum
computation when certain liquids are used along with available NMR. instrumenta-
tion [251-256]. The qubits are the spins of atomic nuclei in the molecules constitut-
ing the liquid. These qubits are extremely well isolated from their environment. The
nuclear spin orientations in a single molecule form a quantum data register. The
liquid contains about 10?3 molecules at room temperature and undergoes strong
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random thermal fluctuations. The liquid is located in a large magnetic field, and
each spin can be oriented either in the direction of the magnetic field (|1) = |0)) or
opposite (|{) = |1)). An NMR quantum computer operating on N qubits uses mo-
lecules having N atoms with distinguishable spins in the frequency domain. The
input to the computer is an ensemble of nuclear spins initially in thermal equi-
librium. Each spin can be manipulated with resonant rf pulses, and the coupling
between neighboring nuclear spins can be exploited to produce quantum logic gates.
The spins have dipole-dipole interactions, and a driving pulse in resonance can tip
a spin conditional on the state of another spin, thus providing a quantum bus chan-
nel. A sequence of rf pulses and delays produces a series of quantum logic gates
connecting the initial state to a desired final state. By suitable timing of each pulse,
a desired unitary transformation can be resonantly performed on a single spin of
a molecule, even though all the spins in the molecule are exposed, since they all
have slightly different resonant frequencies. The decoherence times of the spins are
long enough that the qubits can be stored for a sufficiently long time. The average
magnetic moment of all the nuclei together is big enough to produce a detectable
magnetic field for measurement purposes. The liquid consists effectively of a stat-
istical ensemble of single-molecule quantum computers, which can be described by
a density matrix. The method exploits the structure present in thermal equilibrium
to produce a perturbation in the system’s large density matrix that is effectively
equivalent to a pure state of much smaller dimension, a pseudo-pure state. The
system of molecules, each having N nuclear spins, can be described by a density
matrix [251-253),

(252) p=2"NI+4pa,

in which the first term describes an equilibrium part that is proportional to the
identity I, and the second term pa is a traceless matrix representing the devi-
ation from equilibrium. For an appropriate pulsed field sequence, the deviation
transforms as a density matrix, the deviation densily matriz, and represents the
statistical ensemble of single-molecule quantum computers in the form of a bulk
effective quantum computer. An effective pure state can be distilled out of pa
by means of a data compression pulse sequence. An appropriate computational
procedure yields a deterministic result in which measuring the ensemble yields a
nonvanishing average. Readout is performed by measurement of the magnetization
of the bulk sample. This is bulk quantum computation employing large ensembles
of quantum systems instead of single systems. Such a bulk quantum computer
acts as an ensemble of many small quantum computers carrying out computations
independently in parallel. The initial state of each is random, and only ensemble
averages of each computer register can be measured. The ensemble can effectively
behave like a pure state, since even if, for example, only a small fraction of the
systems are in their ground states, the ones that are not can be arranged so that
their signals cancel each other, and only the fraction in the ground state produces
a nonvanishing signal, making the ensemble appear to be pure. Generally, if a
chosen fraction of the states can be labeled, and the rest caused to average away,
then an effective pure state can be produced [251-253]. Experimental implement-
ations to date include (1) synthesis of high-resolution samples of several two- and
three-qubit molecules [257], (2) implementation of Grover’s fast quantum search
algorithm for a system with only four states [257-259], (3) a proof of principle for
three-qubit quantum computation [260,261], (4) proof-of-principle quantum error
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correction [262], (5) implementation of a quantum algorithm determining whether
an unknown function is constant, or has value 0 for half its arguments and 1 for
the rest [263,264], and (6) implementation of a quantum algorithm for estimating
the number of matching items in a search operation [265,266]. The NMR. quantum
computers have poor scaling with the number of qubits. The measured signal scales
as 27N This feature will likely limit NMR quantum computers to applications re-
quiring only 10 to 20 qubits [267]. Other concepts involving the manipulation of
spin states have also been proposed that use (1) electron spins [268], (2) atomic-
force microscopy to manipulate nuclear spins [269,120], and (3) electron-nuclear
spin interactions in the Hall regime [270].

NMR can be combined with semiconductor technology in a hybrid quantum
computer implementation, the silicon-based nuclear spin quantum computer. Since
it is unlikely that NMR quantum computers can be scaled up to produce large-scale
quantum computations involving very large numbers of qubits, a hybrid concept
has been proposed that uses semiconductor physics to deterministically manipu-
late nuclear spins [271]. The silicon-based nuclear spin quantum computer would
consist of an equally spaced linear or planar array of dopant phosphorus nuclear
spins implanted in a silicon semiconductor crystal, separated by an insulator layer
from overlaying voltage-controlled metal gate electrodes; the gate electrodes would
implement quantum logic operations by affecting the shape of the electron wave-
function surrounding each phosphorus nucleus. The qubits are the nuclear spins
of the phosphorus nuclei embedded periodically in the silicon crystal, each located
directly beneath a gate referred to as an “A gate.” A phosphorus atom in a silicon
host is an electron donor, and at room temperature one of its outer electrons can
move freely in the crystal; however, at the very low temperature of operation of
the device, the electron is weakly bound by the phosphorus ion, and the electron
spin can interact with the nuclear spin. Thus, the weakly bound electron spin can
affect the state of a qubit, since electron and nuclear spins are coupled by the hy-
perfine interaction [249]. Also, the electrons can mediate nuclear spin interactions
and facilitate the measurement of nuclear spins. A voltage applied to an A gate
can cause the wave function of the electron bound to the phosphorus nucleus be-
neath it to become altered, thereby changing its overlap with the nucleus. This
electron-nucleus interaction affects the relative energies of the nuclear qubit, and
therefore also the resonant rf frequency needed to cause a nuclear spin flip. This
makes it possible for a resonant rf pulse to selectively change the state of only
that nucleus. Between any two neighboring A gates is a “J gate,” for affecting the
overlap between two electron orbitals bound to neighboring phosphorus nuclei in
the lattice. This J gate results in an indirect coupling between the two neighboring
phosphorus qubits, and makes it possible to implement the quantum gates neces-
sary for quantum computation. Since it is prohibitively difficult to directly measure
the spin state of an individual nucleus, an indirect approach is implemented, in-
volving a chain of interactions among the nuclear spin, its bound electron and a
neighboring electron, the external magnetic field, and the J gate overlaying the two
electron orbitals; these interactions affect the capacity between neighboring A gate
electrodes, which can be measured. Normally, all electron spins are pointed in the
direction of the external magnetic field, but if the overlap between two neighboring
electron orbitals is sufficiently increased by an applied J-gate voltage, it may become
energetically favorable for the pair of electrons to change their state so that their
spins are opposite. Whether this happens depends on the direction of whichever



48 HOWARD E. BRANDT

phosphorus spin is coupled most strongly to its bound electron, and that depends
on the A-gate voltage. The Pauli exclusion principle does not allow both electrons
to hop into the same atom, unless their spins are opposite, and a hop changes the
capacitance between the neighboring A electrodes. This same mechanism also en-
ables qubit states to be initialized, since each can be measured individually, and
the measured state can be reversed with an NMR pulse if necessary. Before such
a device can be successfully implemented, many formidable technological problems
must be overcome, including (1) emplacement of individual phosphorus atoms in a
prescribed regular array in a perfect Silicon crystal, (2) development of defect-free
semiconductor and overlaying layers, (3) limitation of the decoherence rate of the
phosphorus qubits in the presence of electrode fluctuations, gate biasing, rf-induced
eddy currents, charge fluctuations, spin impurities, and crystal defects, (4) suffi-
cient limitation of the probability of error in each operation, and (5) nanoscale
fabrication [271-273].

Another popular solid-state approach to quantum computer development is the
quantum-dot quantum computer. Various approaches have been considered to the
potential development of quantum dot quantum computers [274-286]. In one of
the most interesting approaches [277-281], a qubit would be the two spin states of
an electron in a single-electron quantum dot, and a quantum register would consist
of an array of coupled single-electron quantum dots. Each semiconductor quantum
dot would consist of one excess electron with spin 1/2 in a potential well that
confines the electron in all three dimensions. Quantum gate operations would be
performed by gating of the tunneling barrier between neighboring dots, to produce
controlled entanglements of the qubits. The tunnel barrier between dots could be
raised or lowered by the application of a higher or lower gate voltage [277,279]. If
the barrier is sufficiently reduced, virtual tunneling can occur, resulting in transi-
ent spin-spin coupling. Hopping to a neighboring auxiliary ferromagnetic dot can
be used to implement single-qubit operations. Also, readout can be implemented
through tunneling to a neighboring auxiliary paramagnetic dot, which can nuc-
leate a ferromagnetic domain that could then be measured [277]. Alternatively,
spin-dependent tunneling into another neighboring auxiliary dot can enable spin
measurement by means of an electrometer [280]. Reversing this procedure might ac-
complish general-state preparation. Ground-state preparation can be accomplished
by cryogenic cooling in a uniform applied magnetic field. In other approaches, the
qubit does not comsist of electron spin states, but instead of pseudo-spin states,
corresponding to charged orbital degrees of freedom [282-285]. Real spin has the
advantage of (1) permanent well-defined qubits with no extra dimensions for qubit
state leakage, and (2) much longer dephasing times [277). Although spin degrees
of freedom are not significantly affected by fluctuations in electric potential, they
are subject to decoherence arising from magnetic coupling to the environment. In
other approaches, gate operation may be performed by spectroscopic manipulation.
Coherent optical control of quantum-dot states is an important area of research.
Picosecond optical excitation can be used to coherently control quantum-dot states
on a time scale that is small compared to the decoherence time [286]. Generally,
it is expected that solid-state systems, because of their complex internal field and
many-particle environment, will subject qubit states to numerous possible mechan-
isms of quantum decoherence, presenting formidable obstacles to the development
of a practical large-scale quantum computer based on the quantum-dot approach.
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Another possible condensed-matter approach to quantum computer development
involves macroscopic superconducting quantum states. One of these is the Joseph-
son junction guantum computer. Efforts are also under way to develop a Joseph-
son junction quantum computer [287-293]. In one relatively simple exploratory
approach, a nanoelectronic device would consist of an array of low-capacitance
Josephson junctions [287-291]. The device would exploit coherent tunneling in
the superconducting state, with the possibility of controlling individual charges by
means of Coulomb blockade effects. The Josephson junction qubit is implemented
in a small superconducting island connected by a tunnel junction to a superconduct-
ing electrode. The qubit consists of two charge states of the superconducting island
adjacent to the junction. The logical states differ by one Cooper-pair charge. The
island is connected to an ideal voltage source with a gate capacitor between them.
An array of such Josephson junction qubits, each with its own voltage source, are
connected in parallel with each other and also with a mutual inductor. The array
would serve as a quantum register. One- and two-qubit gates can be implemented
by application of appropriate sequences of voltages across the junctions, and by the
tuning of selected qubits to resonance. Readout can be accomplished by capacit-
ively coupling a dissipative normal-metal single-electron transistor to a qubit [288].
It is encouraging that coherent tunneling of Cooper pairs, and related characterist-
ics of quantum superposition of charge states, have already been theoretically in-
vestigated and experimentally demonstrated [294-298]. This simple design presents
various challenges: it requires high-precision timing control, and it involves residual
two-qubit interactions that will produce errors. An improved design is being con-
sidered, in which the Josephson junctions are replaced by SQUIDs (superconducting
quantum interference devices) that can be controlled by magnetic fluxes [289]. This
design would enable exact on-off switching of the two-qubit coupling, relaxation of
the timing control and system parameter requirements, and complete control of two-
qubit couplings. Parallel operations on different qubits may be achieved, in prin-
ciple, by more advanced designs, including additional tunable SQUIDs to decouple
different parts of the circuit. Scaling to large numbers of qubits with massively
parallel operation will necessitate much more elaborate designs, significant pro-
gress in nanotechnology, reduction in working temperature, near-perfect control of
time-dependent gate voltages, and much longer decoherence times. It is well also to
mention another possible approach to quantum computation using Josephson junc-
tions [293], which would exploit the quantized states of position of superconducting
vortices [299-301]. The two basis states of a qubit might be a vortex positioned in
one of two neighboring superconducting loops with a Josephson junction between
them. A vortex would have to be capable of being in a quantum superposition
of positions. In other work, high-temperature-superconductor Josephson junctions
are being considered for possible use in the construction of a quantum computer
[292].

Another approach to quantum computer development involves a SQUID quantum
computer, which would exploit the physics of superconducting quantum interfer-
ence. The quantized flux in a SQUID might also be used as the basic qubit, instead
of the charge of a Josephson junction island. This would provide the basis for a
potential SQUID quantum computer [302-304]. It is encouraging that experimental
demonstrations have been made of quantum jumps in SQUID rings [305] and reson-
ant tunneling of the flux between quantized energy levels in different flux states of
a SQUID [306,307]. Although SQUIDs are macroscopic objects, and macroscopic
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objects generally suffer decoherence in the extreme, many of the dissipative mech-
anisms that normally operate in macroscopic systems can be eliminated in SQUID
systems [37,308-312). The Hamiltonian of an rf SQUID can be represented as a
two-state system [310]. The SQUID consists of a single tunnel junction with critical
current I, shunted by an inductor L. If a magnetic flux of half the fundamental
flux quantum,

(253) $o = mh/e,
is applied to the loop (e is the magnitude of the charge of the electron), and if
(254) 1< 2rLI /¢y < 57/2,

then a two-state system can be created, in which the two states correspond to
the loop containing either one flux quantum or none at all [302]. A supercurrent
then circulates the SQUID ring in either direction. In principle, a superposition
state can also be created, but this has not yet been accomplished, despite concer-
ted attempts [313,314]. One must also be able to entangle multiple qubits with
each other. No quantum logic gate has yet been experimentally demonstrated in
the SQUID approach. Important issues in the SQUID approach to quantum com-
puter development include the required operating temperature, required junction
quality, suppression of competing modes, magnetic coupling of flux qubits to mag-
netic impurities, unidentified decoherence mechanisms, sufficiently small junction
capacitances, and required fabrication technology.

Another innovative approach to quantum computer development involves trapped
atoms in optical lattices. Lasers can be used to confine ultracold atoms in peri-
odic lattices [315-325]. The atoms are held together with light (instead of chemical
bonds, as in a solid). Laser cooling and trapping techniques, used in producing
Bose-Einstein condensation, are also used to form optical lattices. In an optical
lattice, ultracold atoms can be arranged in a crystal-like array in an optical poten-
tial in which the intensity or polarization of light varies periodically. Near-zero-
temperature webs of interfering laser beams can be used to cool a collection of
atoms, and the atoms become suspended in well-defined positions in the interfering
beams. The separations of the atoms in an optical lattice are hundreds of times
that in an ordinary solid. Currently, only about one in ten lattice sites is filled. The
potential well depth is ~10~% that in a solid, and the dynamical oscillations of the
atoms (1 to 100 kHz) are ~10°% to 10° lower in frequency than in a solid. Defects
and impurities are absent in the optical lattice. Through changes in the polariza-
tion and the direction of propagation of the laser beams, many different crystalline
structures can be created in one, two, or three dimensions. The optical potential
seen by an atom in an optical lattice depends on the magnetic quantum number of
the atom. Dissipation and decoherence in optical lattices occurs due to spontaneous
emission [326]. Evaporative cooling may be able to produce lattices in which every
site is filled. Atoms can be trapped in a two-dimensional lattice and cooled to the
zero point of motion by resolved-sideband cooling [327]. These characteristics are
important for initial state preparation and the manipulation of quantum states.
An optical lattice may serve as the arena for neutral atom quantum computers, as
discussed below. Also, it will likely be possible to create Bose-Einstein condensates
trapped in optical lattices [321]. This would provide the arena for Bose condensate
guantum computers.
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It may become possible to implement quantum logic with neutral atoms trapped
in an optical lattice, very far off resonance [328]. A qubit would consist of two
states of an atom. If the lasers are detuned very far off resonance, photon scatter-
ing is made negligible, and high laser intensities will maintain substantial potential
wells. By means of laser cooling, the atoms can be prepared in the ground state
of the potential well. The lattice geometry can be varied dynamically: changing
the angle between different laser polarizations can control the distance between
wells. Two atoms trapped in neighboring wells can be forced into the same well by
varying the polarization of the trapping lasers. An auxiliary laser can then induce
a near-resonant electric dipole, and the electric dipole-dipole potential will provide
the predominant interaction between the atoms. Following this, the atoms can be
separated by adiabatic rotation of the laser polarization. Quantum gates would
be implemented through the induced coherent dipole interactions. Single-qubit op-
erations would be performed with polarized resonant Raman pulses. Two-qubit
operations would require conditioning the state of one atom on that of the other.
A controlled-NOT gate could be achieved by conditioning the target atomic reson-
ance on a resolvable level shift induced by the control atom. The resonant dipoles
would be conditionally turned on only during conditional logic operations, and en-
vironmental decoherence would thereby be suppressed. Large numbers of atoms
could be entangled by a sequence of two-qubit interactions. If the atoms are lightly
confined to separations small relative to the wavelength, then a coherent dipole-
dipole interaction can be induced with negligible photon scattering. The coherent
level shift can thereby be substantially enhanced, while the cooperative emission
rate is substantially suppressed. The atoms couple very weakly to the environment
and would interact only during two-qubit logical operations, and all manipulations
would be performed rapidly relative to the photon scattering rate, thus impeding
spontaneous emission, which is the main source of decoherence. Before an opera-
tional neutral atom quantum computer can be successfully developed to perform
even elementary quantum computations, many issues must be explored, including
(1) increasing the filling fraction of atoms in the lattice, (2) developing methods for
addressing and reading out individual qubits, (3) investigating the effect of atomic
collisions, and (4) implementing quantum error-correction methods.

Bose condensates in optical lattices provide another innovative approach to
quantum computer development. Bose condensates can be confined in an optical
dipole trap [329]. They can also be created in an optical lattice [330]; the theory
of condensates in optical potentials has been investigated [331]. A very innovative
scheme has been proposed [332] to fill an optical lattice with a Bose condensate,
and exploit ideas related to Mott transitions in optical lattices [333]. A far-detuned
optical lattice acts as a conservative potential and could be loaded with a Bose
condensed atomic vapor, resulting in tens of atoms per lattice site. It has been
argued [333] that the dynamics of bosonic atoms corresponds to that of a Bose-
Hubbard model [334], which describes the hopping of bosonic atoms between the
lowest vibrational states of lattice sites. The important system parameters can be
controlled by appropriate laser parameters and configurations. The model predicts
a phase transition from a superfluid phase to a Mott insulator phase at low tem-
perature. This results in the formation of an optical crystal with long-range order
and period controlled by the laser light. A finite gap is produced in the excitation
spectrum. An optical crystal could be created with uniform lattice occupation,
or tailored atomic patterns could be produced. This would occur at sufficiently
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low temperature that cold laser-controlled coherent interactions could implement
conditional dynamics in moving trap potentials. Methods were investigated for
producing two-qubit quantum gates and highly entangled states, and may provide
the basis for a possible Bose condensate quantum computer.

23. QUANTUM ROBOTS

Since computer technology has often been closely linked with automata or ro-
bot technology, it is a natural progression to consider the possibility of a quantum
robot. A quantum robot would be a mobile quantum system containing a quantum
computer and other ancillary systems [335-338]. It would perform tasks such as
measuring the environment and changing the state of the environment. The robot’s
quantum computer can be modeled as a cyclic network of quantum gates. Compu-
tations performed by the quantum robot would include determining its next action,
and recording information about the environment. Actions of the robot would in-
clude moving itself and recording information on the environment.

For analytical and numerical convenience, models of quantum robots have been
developed based on discretized space and time. Environments can be open or
closed, and are modeled to include arbitrary numbers and types of systems moving
in one-, two-, and three-dimensional spatial lattices. The systems are characterized
by some internal quantum numbers, and can interact with each other or be free.

Quantum robot dynamics is described in terms of performing tasks. Tasks are
described by their goals, such as producing changes in the state of the environment,
and making measurements by transfer of information from the environment to the
robot.

An example of a task might be to move each system, located in a spatial region
R of a one-dimensional lattice, two sites to the right if the destination site is un-
occupied. The path taken by the robot and the criteria for determining when it
is inside or outside the region R must be specified, and the robot must be able to
make the required movements. If there are, for example, three systems in region R
at locations z;, z3, and z3, then the initial state of the environment in that region
is

(255) lz) = |z1) lz2) |23)

and the final state is

(256) |z +2) = |z1 +2) |72 + 2) |23 + 2.
If the initial state of R is a linear superposition,

(257) ) =) ele),

E4

of three position states |z) in R, then the final state is

(258) W)y=Y clz+2).
T
This equation illustrates the fact that quantum robots can complete the same task
simultaneously on many environments.
Another task might be to perform measurements or experiments on the environ-
ment: for example, to determine the distance between a particle and the quantum
robot.
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The dynamics of each task can be described as a sequence of alternating compu-
tation and action phases. The purpose of each computation phase is to determine
the action of the robot in the subsequent action phase, and to record local environ-
ment information. The computational input to the robot’s computer includes the
local state of the environment and other useful information, such as the output of
the previous computation phase. During each action phase, the state of the environ-
ment can be changed. What happens during an action phase depends on the state
of the output system and the state of the local environment. (A simple example of
an environment is a one-dimensional lattice of qubits, or a one-dimensional lattice
containing a particle located at some site.)

A unitary step operator T is associated with each task and describes the task
dynamics during one time step. The system dynamics for n future directed time
steps is represented by T™, and for n past directed time steps by (T1)". The step
operator 7" has two components,

(259) T=T.+Ta,

where 7T, and 7, represent the computation and action phases, respectively, of the
quantum robot.

The robot’s quantum computer includes a finite-state output system o. In the
computation phase represented by the operator T, the action to be carried out is
determined. The states of o and the nearby environment are computational inputs.
The multistep computation determines a new state of o as output. The action phase
represented by 7, is carried out based on the state of o0, and includes motion of the
quantum robot and local changes in the state of the environment. The computer
also has a control qubit ¢ to regulate whether T, or T, is active. If c is in state |0),
then T, is active. If c is in state |1), then Ty, is active. The last step of T, or T,
includes the changes |0) = |1} or |1) = |0}, respectively. The operators T, and T,
must satisfy certain requirements.

The requirement that 7, not change the robot location or the state of the envir-
onment is expressed as follows [336]:

(260) T, = Z PreT.PipFs,
zE

where

(261) Pip =|zE) (zE)|

is a projection operator for the quantum robot when it is located at site z in state
|z) and the environment is in state |E), and

(262) 1zE) = |z) |E),

where the tensor product is implicit. Equation (260) ensures that iteration of T,
does not change the location of the robot or the state of the environment. Also in
Eq. (260),

(263) o = 10) (0|

is the projection operator for the control qubit in state |0), and it ensures that 7,
is inactive if the control qubit is in state |1). Another condition on T, follows from

the requirement that it depend on the environment only in the neighborhood of the
quantum robot [336].
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The action phase operator T, depends on the states of o, but does not change
them. This results in an algebraic condition on 7, similar to Eq. (260), namely
{336],

(264) T.= ) PXPLT.P PFPY,
zz'ly

where P is the projection operator for o in state |I;), Pj" is the projection operator
for the quantum robot at site z, Pf is the projection operator for ¢ in state |1),
and the sum restricts any movement during a time step to a neighboring site only.
Also, T, is independent of the states of the computer and the states of distant
environmental systems, and this results in another algebraic condition on T, [336].

The time development of a task can be expressed in terms of a sum over paths
[339]. The overall state |¢(n)) of the system after n time steps is

(265) [¥(n)) = T"[(0)),

where [1(0)) is the initial overall state of the system. If |b), |I), and |¢) denote basis
states for the computer, output, and control qubit, respectively, then a basis state
for the overall system is

(266) [blizE) = [b) |1} |4) |) | E) ,

and by completeness of the set of states, one has

(267) > |blizE) (blizE| = 1.
blizE

Substituting Eq. (267) in Eq. (265), one has

[b(n)) = T"(Z |blizE) (btz’mEl) [%(0))

Wiz E
(268) = Y TtbihismEr) (biliiiza Br[9(0))

bilii1z1 By
in which dummy summation variables b, [, 7, z, and E are replaced by by, [y, 11, 1,
and FE;, respectively. Therefore, the amplitude for ending in the state |blizE) is
(269)  (HlizElp(n)) = Y (blizE|T"|bylyirz1 By) (bilrirz1 By |9(0)).
bilii1z1 Eq

The notation is simplified if we define

(270) lwi) = |blizE) .
Then Eq. (269) can be written as
(271) (wilg(n)) = Z (Wil T™ [wyé1) (w1da |9(0)) -

The matrix element (wi| T™ |w141) appearing in Eq. (271) gives the amplitude for
evolving from the state |w;,) to the state |wi) in n steps.
It is true that

(272) T* =T1T1.1T.
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Therefore, substituting Eq. (272) and the completeness relation, Eq. (267), in the
matrix element (wi| T™ |w; 1), one obtains the following expression [336]:
(273)
(wi| T™ lwyiy) = Z (wi| T wpin) (Wnin| T |wn—-19n—1) ... {waia| T |w1i1) .
W2l'z...wnin

As in the path integral approach [339], Eq. (273) can also be written in terms of a
sum over paths of states {Jwi)} of length n + 1, where the initial element is |wyi;),
and the final element is |wi), namely,

(wil ™ lwlil)

= Z (Wilpn+1) (Prt1] T |pn) (Pal T [Pa-1) .. (p2| T |p1) {p1|w1i1)

paths p of
length n+1
= Y {pn41|TIpn) (Pnl T [pn-) - (2| T Ip1) (s i)™ {pr|wiis).
paths p of
length n+-1
(274)
The control qubit projection operators are given by Eq. (263}, together with
(275) Pr=11)(1).
Also, by completeness, one has
(276) PE+P=1,

and one can therefore write
(277) T'=(P+P)T (P + P0)T (P§+PY)...(Ps + P0)T (P§ + PY).
From Egs. (259), (260), and (264), one has

(278) TP =T+ T) PL=ToPf =T, ,
since
(279) PEPE=0,  PSPf=PF,  PSPS=Ft.
Similarly,
(280) TP =T,.
Using Egs. (278) and (280) in Eq. (277), one obtains [336]
(281)

n 6(Z,n)

Tﬂ = Z Z Z (P(;: + Pf) (Tve)h‘ (Tve—l)h'_l (Tv’l.?z)h2 (Tul)hl ]

vi=a,¢ t=1 hi,ha,...hs=1

where vj11 = a if v; = ¢, and vj41 = ¢ if v; = @. The summation upper limit
4(Z,n) means that the sum must satisfy hy + hz + ... + by = n. Equation (281)
expresses T™ as a sum of alternating computation and action phase operators. The
operators T, and T, do not commute, and the operators for each phase are time
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ordered, with (T, +1)hj *1 occurring after (T, ,.)hi . With Eq. (281), it can be shown
that [336]
6(Z,n)

il T wi0) = > 3> S (il (T,)™ fw) .-

t=1 wa...wr hy Jho,.hy=1

(282) X (w| (T,)" |wz) (wa (T,)™ fwy),
where
(283) [w) = |b} |1} |z} |E) .
In terms of paths, the same matrix element becomes [336]
n 5(21"') A
(il T jwi0) = Y ) do (el (T,)" Ipe) oo
t=1 paths p of length t+1 hy,hs,...h,=1
(284) X (ps] (T,)"™ Ip2) (pa] (T)™ |p1) (wipst1) (p1lwr),
where
(285) |ps} = |w;} = 1b;) li;) |25} | Ej)

denotes the jth state in path p.

The formalism given above was used in a simple example in which the environ-
ment consists of one particle on a one-dimensional spatial lattice, and the robot is
to determine its distance from the particle [336]. To complete the task, the robot
moves to the right on the lattice, and counts the number of lattice sites as it moves.
When the particle is located, the number of steps is registered as the distance. The
robot then returns to its initial position, and the task is complete. More complex
tasks that result in entanglement can also be addressed: tasks involving decision
trees of sequences of measurements of noncommuting observables, or even tasks of
factoring numbers [139] or searching a database [340], could also be treated as tasks
for the quantum robot.

The possibility of a qubit device quantum dynamically affecting and reacting to
both itself and its quantum environment is interesting. However, the same deco-
herence issues facing quantum computer development will also apply to quantum
robots. Notwithstanding these difficulties, heroic efforts have been successfully
made in recent years to develop quantum error-correction methods to overcome
- quantum decoherence problems (see Sect. 21).

24. CONCLUSIONS

Revolutionary new advances have been made recently in the areas of quantum
communication, quantum information processing, quantum computing, and quantum
cryptography. These advances have led to a wide variety of potentially useful qubit
devices. Several of these devices (such as interaction-free detectors, quantum key
receivers, quantum games, all-optical quantum information processors, and vari-
ous quantum gates) offer near-term opportunities for practical development. Other
qubit devices must first overcome the obstacle of quantum decoherence. It is there-
fore important that the physics of quantum decoherence be much more extensively
and thoroughly investigated, both experimentally and theoretically, if these qubit
devices are to become a useful reality. Although heroic efforts have been made
to develop both theory and methods of quantum error correction and decoherence
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control, many practical issues remain, and it is important that these theoretical
methods be physically implemented and tested.

Qubits have been successfully implemented with photons, atoms, and nuclear
spins, including the production of superposition states and qubit entanglements.
However, the qubits that would form the basis for quantum computers based on
quantum dots, Josephson junctions, SQUIDs, and Bose condensates remain to be
experimentally demonstrated. It is important to stress that a viable qubit must not
only be a two-state system, it must also be capable of existing in a superposition
of Boolean states and being entangled with other qubits.

To test the validity of the various approaches to useful quantum information
processing, it is important to implement a variety of qubit entanglers that can con-
struct multiple-qubit entanglements using photons, atoms, nuclear spins, quantum
dots, Josephson junctions, SQUIDs, and Bose condensates. For the full power of
quantum technology to be exploited, large-scale controlled entanglements must be
producible.

The quantum key receiver is ready for practical development, and should be
useful both in quantum cryptography and in fundamental studies of the generalized
measurement of photonic qubits, based on a POVM. Deterministic single-photon
sources need development.

Although quantum game theory has only begun to develop, it is possible that
interesting quantum games could be constructed with NMR or all-optical quantum
information processors. Also, all the various quantum gates should be implemented
with all the various types of qubits, and their engineering design should be optimized
to meet the severe fidelity requirements for large-scale quantum computation.

A variety of EPR-pair sources should be developed, along with innovative meth-
ods for efficiently storing EPR correlated states. Also, Bell-state synthesizers, using
various types of qubits, need much further development for use in quantum dense
coding and quantum teleportation. Bell-state analyzers must be developed that
can measure all four Bell states; for that purpose, it is important that gates be
developed that enable robust nonlinear interaction between two qubits.

Robust Bell-state analyzers are essential for the useful implementation of entan-
glement swapping. Theoretical generalizations of entanglement swapping to manip-
ulate entangled multiparticle systems remain to be experimentally demonstrated.
Possible applications of entanglement swapping include cryptographic conferencing
and quantum telephone exchanges. Decoherence is a critical issue also for the
development of practical entanglement swappers and quantum teleporters. It is
presently not possible to store separated EPR particles for periods of time that
are sufficiently long for many applications. Still awaiting exploration is the possible
implementation of quantum-error correction methods, which are needed for reliable
quantum teleportation and for long-distance quantum key distribution.

Although quantum states cannot be cloned, it is important to thoroughly invest-
igate methods for making approximate copies of arbitrary quantum states for pos-
sible information processing and quantum cryptographic applications. All-optical
quantum information processors are ready for practical development and should
be exploited for proof-of-principle demonstrations of quantum computation, and as
small special-purpose quantum information processors.

The construction of practical universal quantum computers is presently not
feasible, and must await further new revolutionary discoveries and advances. The
successful development of quantum simulators could enable simulations of physical
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systems that are intractable on classical computers. Although a quantum factorizer
does not presently exist that can factor even a 5-digit number, if one were success-
fully developed to factor numbers of more than 250 digits, many cryptosystems
would be rendered insecure and obsolete.

Although ion-trap quantum computers are unlikely candidates for performing
large-scale quantum computations involving more than 100 qubits, the ion-trap
technology affords continuing opportunities for experimental investigations of many
issues of quantum decoherence and quantum information processing, and may also
lead to the development of special-purpose, small-scale quantum computers.

The cavity QED approach to quantum computing needs much more extensive
experimental verification. Cavity QED continues to serves as a near-term arena
for experimental investigations of the fundamental physics of quantum informa-
tion processing and quantum decoherence, and may also be useful for small-scale
quantum computation; however, it is unlikely that it will lead to a practical large-
scale quantum computer. Cavity QED does offer interesting possibilities for the
development of quantum communication networks.

The NMR quantum computer is the first small-scale proof-of-principle quantum
computer, and it continues to furnish useful insights into practical quantum in-
formation processing; because of its poor scaling, however, it will likely be limited
to computations requiring only 10 to 20 qubits. Nevertheless, the possibility of
combining NMR with semiconductor technology is currently receiving considerable
attention. It is hoped that the silicon-based, nuclear spin quantum computer can be
scaled up to perform large-scale quantum computations involving large numbers of
qubits. The quantum-dot quantum computer is another attempt to implement
semiconductor technology in quantum computation. However, severe problems
posed by quantum decoherence face any quantum computer based on the solid
state.

Josephson junction and SQUID quantum computers would be based on the su-
perconducting state, and for both types, robust viable qubits (which can exist
in superpositions and be entangled with each other) remain to be demonstrated.
Neutral atoms or Bose condensates trapped in optical lattices provide still another
possible innovative approach to quantum computer development.

Quantum robots offer the exciting possibility of a qubit device that can quantum
dynamically affect and react to both its environment and itself. The successful
implementation of quantum robots, quantum computers, and most qubit devices
will depend on incorporating effective quantum error-correction methods, together
with effective decoherence avoidance and control.

The future of quantum information science and technology appears bright, as
do the prospects for successful implementations of a broad spectrum of innovative
qubit devices.
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