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Summary

We consider the linear elasticity model of a 2D-solid with a crack under the
stress-free boundary condition at the crack. To analyze the sensitivity of a crack
shape, one needs to define variations by distributed parameters. We apply the
technique using the global variations of a solution and obtain the expansion of
the potential energy functional of an arbitrary order with respect to the function
describing the crack shape. By the Griffith criterion, from the representation of
the total potential energy up to the second order terms we deduce the parametric
problem for local optimization of the crack shape and condition of its solvability.
This allows us to study also a quasi-static model depending on the loading
parameter.

The shape sensitivity was studied in Simon [1], Sokolowski and Zolesio [2],
Khludnev and Sokolowski [3]; variations of a crack were considered in Rice
[4], Khludnev and Kovtunenko [5], Bach, Khludnev and Kovtunenko [6].

1. Variation of a crack shape

Let 2 C R? be a bounded domain with a boundary I' of the class C%!, and
Q = QUT. We define a crack Ty as the segment {0 < z; < [, z = 0} of the
z1-axis in R? which lies inside some subdomain B of Q. We consider a body
with a crack occupying the domain Qy = Q \ Tp.

Let f € [C*(02))? be a given force, and let the solid possess the usual linear
Hooke law

1 .
oij(u) = cijren(u), €i(u) = 5(%',:' +uj:), i,j=12,

Cijkl = Cjirl = Crtijy C1&ij&ij < Cijmémbiy < c2éijéij, c1,c2 >0,

with the constant coefficients c;;x; for simplicity. We look for the displacement
vector u = (u1,uz) in the functional space

HY () = {u € [H* ()%, ©u=0 onT},



which includes the zero displacement condition at the external boundary I'. At

the crack faces I't split by the normal vector (0,1) to I'y we assume the usual

stress-free boundary condition of the Neumann type o012(u) = o22(u) = 0.
Introduce the potential energy functional of the body with the crack

(i %) = 3 / e (w)eis (w) — / fiue. (1)
Qo Qo

The equilibrium problem is equivalent to the minimization of this functional
and gives the variational equation

/ i3 ()45 (0) = / fi Vo e B'(Qo). )
Qo Qo

By the well-known properties of II and by the Korn inequality provided that
the functions are zero on T', there exists a unique solution u° € H() of (2).
The corresponding boundary value problem for u° is of the form:

~0i(®w®) = fi, i=1,2, inQ;
UiZ(u0)=0, 1=1,2, On]:‘al:; u®=0 onT.

Let us now introduce a curvilinear crack I'y close to I'yp given by a smooth
function ¢ € C*(R), ¥(z1) = 0 outside (0,!), namely

Ly={0<2 <1, z2=1(z1)}

We suppose that [';, C B and B c Q. The normal vector v to I'y defines
its positive I‘$ and negative '), faces. In the domain Qy = Q\I'y with the
perturbed crack I'y, we have the potential energy functional

1
H(u; Q¢) = 5 /O'ij ('U.)E.‘,'j(u) — /f,-u,- (3)
2y Qy
on the functional space
HY(Qy) = {u e [H*(QW))?, u=0 onT}.

By the same reasons, there exists a unique solution u¥ € H* (2y) of the equi-
librium problem

[estreo) = [ o voe B @), @
Qyp Qy
which fulfils the following relations

—O'ij,j(ull)) = fi, 1= 1,2, in Q¢;



oij(u¥)y; =0, i=1,2, onTy; w¥=0 onl.

We are now going to construct a local coordinate transformation A mapping
0, onto the fixed domain . Choose a smooth cut-off function # such that
suppn C 2 and n(z) =1 on B. We denote ¥(z) = ¢(z1)n(z) for simplicity and
define the transformation

Atiyi=m1, y2=22+¥(z), €, Y€ Qy. (5)

Its Jacobian J = 1+ ¥ 3 is strictly positive for any % with ||¥||c(o,n) < €0 for
some o small enough. Therefore, the correspondence A~! is one-to-one and
A: Qy — Q. In the future we will denote by ‘hat’ the transformed function
A o u, namely

u(y) = u(z1, 22 + ¥(2)) =8(x), =€, yeEQy. (6)

One can easily calculate the inverse matrix of the transformation (5) as

a(.’tl, (L'z) _ 1 0
o(y1,v2) _%‘I’.l 1- %‘I’,Z ’
which leads to the following relation between derivatives
ou_oa_1, 88
8yi o 35&; J ’za.’l}z’
Consequently, we can write the transformation of the strain and stress tensors

6is(u) = €1g(@) — B(B58a), ow(w) = 0(@ — 784(Hi32) (1)

i=1,2.

with the new forms
1 .
Bij(¥w) = 5 (Taw; + V), Tij(¥iw) = cguBu(Tw), i,j=1,2.
Applying the transformation (5) to the integrals in (4), in view of (6) and (7)
we rewrite the equation (4) on the fixed domain p:

1 ~~ —~
/cr,-j(ﬁ“p)sij(v)+A(\Il;'L’i"”,'v)+B[7] (¥2;,0%,v) = /wai Yv € HY(Qp), (8)
Qo Q0

where the bilinrear forms A and B[-] are given as

A(T;u,v) = /(‘I’,ztnj (w)esj(v) — T4 (Y5 u,2)€5 (v) — 04 (U)Eij(‘l’;v,z))a
Qo 9)

Blw](¥2;u, v) = / w - Ti (T3u2) By (¥ ,9).
Qo



Thus, the transformed solution @¥ € H!(f) is the unique solution of the
problem (8).

2. Global variations of the solution

We seek an expansion of the solution 4% of (8) in the form of a series
— 1 (n) ©
¥ =u0+ Zl U (y"), u (¥°) = u°. (10)
n=

The functions %(y), 4(¥?), ..., (Z) (¥™) are called the global variations of a
solution with respect to 9 of the corresponding order n. To obtain them, we
need to decompose the equation (8) with respect to .

First of all, from (6) one can easily write the expansion of the transformed

force f by (5) as
F=f+ Z e (11)

n! 6:1;

with the obvious estimate
Pk gk f
|7- Z KT 92k 5af |

Therefore, it follows from (11) that

“"/"”g-{-(l[o,l]), n=20,1,... (12)

(2@

Jfi=(1+¥s)fi= f,+zn,( an_lf') , i=1,2. (13)
2

oz~

Also we get

1
7_1—— 1+Z —¥,)". (14)

Let us substitute formally (10), (13), (14) in (8) to obtain

[outa emv)+2 ([ ois (% @)ess ) +na®; "5 1), 0)

Qp

=03 OB @ @ i)
k=0

_ = 1 naﬂ_lfi
= /f,'u, + Z_:l m/ (\I’ am?_l ) , V.
Qo n= Qo :




We define the functions (1';) (™) € H (), n = 1,2, ..., as the unique solutions
of the following elasticity problems

n n—1 r, n—
[oal@ wres = [ (5E) w-naw S @m0 as)
o o 2

n—-2
—an-1)y & ;!2)13[(_\1:,2)“‘“] @% % (*),0) Vo e (D).
k=0

That is an iterative procedure for finding of the functions @(%), i(¥?), ..., ('3)

(™) with the initial value (3,) (%°) = u® being the solution of the same elasticity
problem (2). In particular, for n = 1 we have

/ s (6 ()35 (0) = / (Tf) avi — A(T;0,0) Vo B Q). (16)
Qo

Qo

We intend now to prove the correctness of the expansion (10). If we sub-
stitute v = 4¥ in (8) and apply the Korn and Hélder inequalities, then for any
% such that ||9||c1(o,) < €1 with &; > 0 small enough, the uniform estimate
follows

Ila¢l|§1(ﬂo) <ec (17)
Subtracting (2) from (8), one gets
- ~ 1
/U,ﬁj(ﬁqﬁ had ’U,U)E,'j('u) = /(fi - f,' + \Il,gf,-)'ui - A(‘II;Q’I'/’,v) — B[j] (\I!z;ﬁ’/’,v).
Qo n0

Substitute v = ¥ — u® here, apply again the Korn and Hélder inequalities and
use (12), (14), (17) to deduce that

3% = wllz 0y < lllor - (18)
Analogously, the subtraction of (2) and (16) from (8) leads to the relation

/Uij @ —u® —w(¥))esj(v) = /((ﬁ —fi=Ufi2) + U o(fi - fi))vi

Qo 9L‘)

1
—A(T; 3% —ul,v) - B[j] (¥2;0%,0)
and, in view of (18), to the next estimate

|[G¥ — u® - u(zp)ll,;l(no) < c”d’”%zl([o,z])-



In the general case, the above procedure takes the form:

[ou@-o=3 5 @ o)eut = [ (A= 3 5 55)

Qo Qo
n—1 n—1
~ Uk 9k f; 1 (v
+‘I’,2(fi—fi—2ﬁgm—,:))vi—fl(‘l’;ﬁ'/’—uo— P (¢k),v)
k=1 2 k=1
n—2 m
n—2-m 2.5 _ 1_ (%) k
-3 Blwa)" ] (e - 30 5 ¥ @)
m=0 k=0
—B[J( )" (@%av,0).
This provides the fulfilment of the inequalities
1 (k)
”aﬂ, ("/)k)”Hl(Qo) > cll"/’”g_{?[o,z])a n=0,1,.., (19)

k= 0
and proves the following theorem.

Theorem 1. For ||%||c1(jo,) small enough, there exist the global variations

(), a(¥?), ..., @ (y™) € H(Q) given in (15), (16), which yield the ezpansion
(10) with the estimate (19).

3. Variations of the energy functional

We can define the potential energy as a functional P : C§([0,!]) = R by
substituting the solution u¥ of (4) in (3):

P@W) = 1w 0y) = - [ ful. (20)
2y

For 1) = 0 one needs to substitute the solution u® of (2) in (1) to deduce from
(20) that

P(0) = O(u’; Q) = —% / fiug. (21)
Qo

Applying the transformation (5) to the integral in (20), we have

Py) = ——/Jf, a?,



and by Theorem 1 one can substitute the representations (10), (13) to deduce
the expansion of P,

PW) =PO)+ 3. PP "), (22)

where the variations of the order n, n = 1,2, ..., are as follows:

PO = - / (Z T (), Y @

(n)
i (¢"))-
It follows from (15) that

) n n
” u ('l/) )Hﬁl(ﬂu) < C”"ﬁ“m([o,z])’ n=1,2,..,

and therefore, from (22), (23) the evident estimates can be also deduced
Z k! (k) | < Cl ¢||ZT10 [0,0)? n=12,.. (24)

which prove the correctness of the expansion (22) of P with respect to . Let
us note that the integrals in (20) and (21) do not depend on the cut-off function
n, consequently, all the functionals P}(v), P§(¥?), ... do not depend on 5 in
¥ = ¢/, but only on 7.

One can reduce the order n of the variations included in formula (23) to the

order n — 1. Indeed, if we take v =% (") in (2) and of v = u? in (15), then

Qo Qo Qp
n—1 g n 1
— / («q,ﬂ_a_r{’) ; '—'n.A(‘I' ( ) (¢n~l)’u0)
J Oty 2
0

-y ;!2)!3 [(-22)" 7] @% W 84),0),
k=0

and its substitution in (23) yields for n = 2,3, ...

n.—1
") ny _ n! "~ —k= fz (k)_
") = 2 k'(n E)! /(‘I! ka"kl)zuz(wk)

Qo



- [(w22h) A ) (25)

& Azt
n(n -1) "_2 (n— 2) n—z—k (k) &
(2% u (v*),u°),
DO (S Sl
and forn =1 1
Po6) = - [ ()20 + FAT 0, 00) (26)

Qo

In particular, for n = 2 we have

PEW) = = [ (8 fa) pud+ () 2is(9)) + A5 ), )+ BII(F ).
Qo

Moreover, let us take v = %(4) in (16) to deduce from
[ outaen(a) = [(@5).20) - A ), )

the next exzoression )

PLW) = — [ ((5i2) gud + 00 (@l))ews (@) + BUI(P%00,00).  (20)
Qo

Summarizing the discussion above, we have proven the following result.

Theorem 2. There ezist the variations Ph(¥), PY(¥?), ..., P (Y™) of the
energy functional with respect to the crack shape v given by (23) or (25), (26)
such that the expansion (22) with the estimate (24) holds.

Let us define the functional of the total potential energy U : C3{[0,]]) - R
by adding the surface energy of the crack,

!
U() =P(W) +ymeas(T'y), >0, meas(I'y)= /\/1 + 9! (21)? dz,
0

and for ¢y =0
U(0) = P(0) + ymeas (I'p), meas(Ip) =1.

When ||t||c1(jo,j) is small enough, we have the expansion

4 1
[VIF@E =145 [0 + oIl o)
0 0



This relation together with (22) provides by Theorem 2 the following represent-
ation

i
ut) =UO +P4w) + (P +7 [@7) +olWlikeon)-  (28)
0

To find the locally optimal crack shape 9, one needs to minimize the func-
tional (1) by the Griffith criterion on the set ¢ € C}([0,1]), T’y C B. The func-
tional P4 () is associated with the linear continuous form £; : C3([0,{]) = R,

1
Li(¢) = /((‘(ﬂfi),zu? + EW,ZUij(uO)Eij(uo) - Zij(mu?z)eij(uo)) - (29)
o
—nZij (215 ul)ei; () - ¢') ;
because of the formula
E'ij (II’; w) = wEiJ'(m w) + m;blEij(a:l; w)s 1,7 =1,2.

By the same reason, the functional Py (y2) is associated with the symmetric
bilinear continuous form £, : C([0,1]) x C1([0,1]) = R,

L2(1,92) = /((—(nzfi,z),zu? + B4 (m; u%) Eij (m; U?z)) - h1the
o}
+0845 (05 u%) Eyj (w13 %) - ($192)" + 77 Bij (215 u%) Bij (15 u%) - i (30)
o)y (i) ).

where the functions (1) and %(t2), which are linear and continuous in their
arguments, are obtained as unique solutions of the following problem for 9 = ¢,
and ¥ = 1), respectively,

[ astanesto) = [ ((fam = naos6es0)
Qo Qo

545 (15 w65 (0) + 045 (W) Big (i v2) ) - (31)

41y (o199 0) + 0w Buexiva)) ¥ ) o € B (@0)

But the positiveness and the convexity properties of the form £2 remain un-
known. To describe the local minimization problem approximately, we propose
the procedure of parametric optimization.



4. Parametric optimization of a crack shape

Let {px}_, be some finite basis of the functions such that p, € C'(R),
ok (z1) = 0 outside (0,1), k = 1,..., N, and let the graphs of p; lie inside B. For
example, we can take the system of local functions on [0, []:

or(z1) = Acos? ﬂ’;&;"‘l as Ty € [sk — 6,5 + 0], (32)
pi(z1) =0 otherwise,
where s, = k6, 6§ = N;+1 and A > 0 is some normalizing factor. Let us consider
the test function as the linear combination
Y(x1) = Yreor(T1), Y1,...9¥n ER, (33)

with N unknown parameters 9. Substituting p; instead ¢ in (31), we can
find N functions %(p;) € H*(), k = 1,..., N, as its unique solutions. By the
linearity of (31) it follows obviously that

w(PYrpr) = Pri(pr). (34)

Therefore, taking the form £, given by (30) on the test element (33), we have
in view of (34) that Ls(¥kpk, Ynpn) = brn¥rn with the symmetric coeflicients

bnk = ben = L2(pr,pn), k,n=1,..,N.
Analogously, we introduce the coefficients
ck = L1(ox), k=1,...,N,
where the form £; is given in (29), and thanks to its linearity have £; (¥ p1) =
cx¥i. Finally, one can also easily deduce v !' (Vepr) (Ynpn) = Grntrn with

the symmetric coeflicients

1
Onk = Opn = 'y/p;cp;,, k,n=1,..N.
0

Thus, from (28) we have the approximate relation

1
U(rpr) = U(0) + cripr + E(akn + bkn ) Vk¥n = U(¥1, . YN)
and can consider the minimization problem

U@,y pn) — inf. (35)

10



The extremum of the quadratic function U over vy, yields dU/dyx = 0, k =
1,...,N, and leads to the linear algebraic system of N equations with N un-

knowns
Cpn + (akn + bkn)'¢k =0, n=1,..,N, (36)

with the symmetric matrix {ag, + bkn},lcv, n—1 and the right-hand side {—e}V ;.
The solvability condition of (36) is

det {a;m + bkn}ﬁn=1 #0.
A minimum in (35) is guaranteed by the conditions
det {akn + bkn};ﬁn=1 >0, m=1,..,N. (37)

Let us now investigate the system of local functions (32). In this case the
matrix {axn}p n—; is of the form

2 -1 0 0
so| =1 2 -1 .. 0
'”;6” 0 -1 2 .. 0

0 0 0 ..2
. A2n2 N 0
and has the determinant (7T) (N +1) > 0. If we take f = 0 then u® =0,

and it follows from (29)—(31) that {bx,} = 0, {cx} = 0; consequentiy, all the
conditions (37) are fulfilled and 9, = 0, £ = 1, ..., N, is a solution of the system
(36) providing the minimum of U. In a standard way, from (2) the estimate can
be obtained

11l g < ellfllizzcae-

Therefore, for || f||;z2(q)jz small enough, we have
det {akn + bkﬂ}mrml = det {akn};e':nzl + O(Hf”[Lz(Q)]z)

due to the representation of the coefficients by, , that leads to the fulfilment of
(37), and the solution of (36) solves (35) also.
The above consideration can be summarized in the following theorem.

Theorem 3. If the condition
det {antim=1 >0, m=1,..,N,

kolds, then at least for || f||[12(q)2 small enough the system (36) is solvable and
its solution 1, ..., YN minimizes the function U.

On the basis of Theorem 3 we propose a quasi-static model of the local
optimization of the crack shape. Introduce a loading parameter ¢ > 0 and

11



consider the ¢t-dependent force f(t) = ¢tf. By the linearity of the problem (2)
with respect to f we have then u®(¢) = tul. Substituting these values in the
expressions for the coefficients, we have {bg,(t)} = t{brn}, {cn(t)} = t{cn}, and
therefore, the system (36) reduces to

t2c, + (apn + t2bpn)¥r(t) =0, n=1,..,N. (38)

Theorem 3 guarantees the solvability of (38) at least for small ¢, and its solution
¥1(t), ..., ¥~ (t) minimizes the function U(¢) for every such .

In conclusion, we can see that to fulfil the above procedure of a local para-
metric optimization of a crack shape, a unique requirement is to be able to solve
the elasticity problem

[oweso) = Fo) voe Biqo)
Qo

in the fixed domain Q4 with the crack I'g for the various right-hand sides F'.
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