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Abstract

The nonlocal constitutive behaviour of an infinite composite laminate is analyzed.
The laminate is treated as random and is subjected to a combination of deterministic
and configuration-dependent body force. In this case, in addition to the effective non
local elastic operator, other non local constitutive operators must be considered in
order to define the mean response of the body. For a laminate subjected to forces that
vary only in the direction of lamination, these operators are obtained explicitly. The
Hashin—-Shtrikman principles developed by Luciano and Willis (2000a), which provide
bounds for the operators for general composites, are shown to generate exactly the two
operators that define the stress, while giving only bounds for the remaining operator
that appears in the expression for the total energy. The case of a two-phase laminate
with the layers arranged periodically is presented as an example.

Keywords: A, microstructures ; B, constitutive behaviour, inhomogeneous ma-
terial; C, energy methods, integral transforms, probability and statistics.

1 Introduction

Luciano and Willis (2000a) considered the non-local constitutive response of a com-
posite medium, with random microgeometry, loaded by a body-force that depended
on the realisation of the medium. An example is provided by gravity loading: the
body force then has the form pg, where g is sure but the mass density p at position
z depends on the material at . More generally, however, p(z) is simply a given
property of the material. Introduction of such a field is a necessity if the medium



is porous, since force cannot be applied within any cavity. Boutin (1996) considered
such body force in the context of periodic homogenization and noted some difficulty
in deriving a consistent effective stress-strain relation. The difficulty was resolved by
Luciano and Willis (2000a) who observed that an additional term arose through the
presence of the additional random field p. They derived bounds of Hashin—-Shtrikman
type (Hashin and Shtrikman, 1962a, b) for the effective operators relating the en-
semble mean of the stress to the mean strain and the body force. They noted, in
addition, that the energy stored in the composite contained a contribution from the
interaction of the field produced by the fluctuating part of the body force with itself,
and gave Hashin-Shtrikman bounds for this also.

The problem addressed in the present work is a one-dimensional realisation of the
general problem discussed by Luciano and Willis (2000a). A laminate is considered,
whose tensor of elastic moduli L varies with only one coordinate, z say. The medium
is loaded by body force f(z) + p(z)g(xz), directed either parallel or transverse to the
direction of the z-axis. The tensor L is taken to be orthotropic, with one plane of
material symmetry normal to the z-axis. Then, the displacement induced by the body
force only has a single non-zero component, u(z), parallel to the force, and only a
single stress component o(z) appears in the equation of equilibrium. This problem is
solved explicitly, first directly and then employing the Hashin—Shtrikman formalism
developed by Luciano and Willis (2000a). It emerges that the effective modulus
operator is local, and identical with that obtained from conventional laminate theory.
The effective operator linking stress to body force is non-local, however. In this
simple problem it depends on the properties of the medium taken two points at
a time. In consequence, the Hashin-Shtrikman variational approximations (which,
in general, provide bounds which incorporate two-point statistics) deliver this new
effective operator exactly, as well as the effective modulus. The other new operator,
that gives the additional term in the energy, involves points taken three at a time and
hence the Hashin—Shtrikman variational approximations deliver only bounds for this.
The case of a periodic two-component laminate is treated explicitly, as an example.

2 Formulation
For the one-dimensional problem under discussion, the single non-trivial equilibrium

equation is
o' +f+pg=0. (2.1)



Here, the prime signifies differentiation with respect to z. The ‘sure’ component f of
the body force is carried at no extra cost for the analysis. The stress component ¢

satisfies
o(z) = L(z)e(z); e(z) = u'(z), (2.2)

in which L(z) denotes the single relevant component of the elastic constant tensor.
The function p(z) is taken to be a property of the medium: as already remarked,
it could be (but does not have to be) the mass density. The functions L and p
are assumed to be stationary random variables, taking only positive values. More
specifically, for the n-component laminate considered below,

L(z) = z Lo (@), p(z) = z o3 (@), (2.3)

where L, and p, are properties of material of type r and x, is the characteristic
function of the region occupied by that material. It is assumed that f and g have
compact support, contained within the interval (-, 1), say, and that

[+ gy ds =0, (2.4)

where the angled brackets denote ensemble average.
The problem of concern is provided by equations (2.1) and (2.2) for —d < z < d,

with boundary conditions
u{—d) = u(d) = 0. (2.5)

The length d will be assumed much greater than the dimension [ characterising the
support of f and g, which is in turn greater than the “correlation length” of the
medium. The quantities of interest are the mean values (o), (e) and (u). Averaging
equation (2.1) gives

(0)'(z) + £(z) + {p)(z)g(z) = 0. (2.6)
Also, {e){z) = (u)'(x). What is lacking is an “effective” constitutive relation linking
(o) and (e). Luciano and Willis (2000a) argued that this would have the form

(o) = L*M(e) + R°*"g, (2.7)

where L and R*f are non-local operators, expressible in the form of integrals. A
local operator L fits into this framework, in the sense that [Le](z) = [ L(z)d(z —
z'e(z') dx’. '



Now introduce a comparison medium, with elastic constant Ly that is independent
of z, and set

c=Le=Loe+71, T=(L-Loe. (2.8)
It follows from (2.1) and (2.8) that
Lov" + f+pg+7 =0, (2.9)
and hence that
u=ug — Eir, (2.10)
where
uo = Go(f + pg). (2.11)

Gy and Eg are operators. The kernel of Gy is the Green’s function Gy(z, z') associated
with the problem (2.9), (2.5), and the kernel of E} is

El(z,2') = 8Gy(z, ') /0. (2.12)
Explicitly, ‘
G()(.’L', '7’.,) = —%Lallx - xll + Gbm(m7 ml)7 (213)
where ) p
im ! Iz
= — — 2.14

It follows now, by differentiating (2.11) and employing the second form of (2.8),
that

(L - LO} T+ FoT = €y, (215)
where ey = uy, so that
eo = Fo(f + pg)- (2.16)
In these equations, the operator Ey has kernel
Ey(z,1) = 0Go(z,z') /0, (2.17)
and I'y has kernel
2
To(z,z') = ('? g'o = Ly {6(z — ') — 1/(2d)}. (2.18)
Thus, by substituting (2.18) into (2.15),
Ly (L — Lo) 'Lt — Ly'7T = ¢y, (2.19)
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where

N L
T=57 /;d 7(z) dz. (2.20)
Solving equation (2.19) gives
T = (1 - LoL_l){Loeo + (F)_I(_e'o + L(]L_leo)}. (221)

In principle, it would be possible now to employ the relations developed above
to calculate (7), () and (e), and hence deduce the precise form of the effective
constitutive relation (2.7). The relation becomes much simpler, however, if boundary
effects are ignored. This can be done by letting d/l — oo, so that quantities such as
€, T tend to zero. In this limit, equation (2.21) reduces to

7= (1= LoL™")(LoEo)(f + pg), (2.22)
where
LoEy(z,2") = —1sgn(z — z'). (2.23)
It follows from the second equation of (2.8) that
e= (L~ Lo)~'r = L7Y(LoEo)(f + p9), (2.24)
and therefore
o = Le = (LoEo)(f + pg). (2.25)
Thus, by ensemble averaging (2.24) and (2.25), it follows that
(@) = (L7 He) = (LHHL (Lo Eo) (0 — (p))g)- (2.26)
Thus,
L= (L7, R = —(L7) ML (LoBo)(p — (0))- (2.27)

The operator L°F is local. The operator R*T is non-local; the choice of Ly is immaterial,
on account of (2.23).
3 Alternative solution

With the objective of expressing the mean stress directly in terms of the mean strain,
it is helpful to express ey in the form

eo = {e) + Eo(o — {p))g + T'o{r). (3.1)
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Then, equation (2.15) can be written

(L~ Lo)~'1 + To( = (1)) = {e) + Eo(p — (p)g =t ¢, (3.2)

the latter equality defining e. This equation will now be solved, in the limit d/{ — oo.!
First, substituting for I'y as before,

LiY (L — L) Lt = e + Ly} (7). (3.3)
Therefore,
7= (1~ LoL™") (Lo + (7)) (3.4)
and so
(r) = (L7 ({e) — Lo(L7"e)). (3.5)
Hence, reverting to (3.4),
7= (1 LL™){Loe + (L7 ((e) — Lo(L %)) }. (3.6)
Luciano and Willis (2000a) designated the solution of (3.2), not just for a laminate,
r=Te. (3.7)

Equation (3.6) gives T explicitly, for the laminate. It is a local operator in this
case. Substituting € from its definition (c.f. (3.2)) into (3.7), in conjunction with
(o) = Lo(e) + (r) gives

L = Lo +(T), R =(TEo(p~ (p)))- (3.8)

Evaluation of the mean values in (3.8) reproduces (2.27).
For an n-component laminate, as specified by equation (2.3),

T(z) = Z Z (xr(z)/pr)Trsps) (3.9)
r=1 s=1
where
Trs i= (1 — LoL;")[Lors/pr + (L7711 = LoL;Y)]. (3.10)
Here, p, is the probability of finding material of type r at z:
pr = (xr(2)). (3.11)

It is independent of z, and so coincides with the volume fraction of material of type
r, on account of the assumed statistical uniformity.

In fact, all subsequent reasoning will be for this limiting case, which will not be mentioned
explicitly each time.



4 Hashin—Shtrikman approximation

Luciano and Willis (2000a) developed Hashin-Shtrikman approximations for a general
n-component composite which includes, as a special case, the laminate of present
concern. Substitution of the trial field

n

7(2) = 3 = (@)xx () (4.1)

r=1

into the stochastic version of the Hashin—Shtrikman variational principle and opti-
mizing over the functions 7, requires that 7, satisfy the equations

pr(Lr - LO)_lTr + Z {Fowrs}'rs = Drér, (42)
s=1
where n
Drer = prle) + z {Eotrs }psg- (4.3)
s=1

{To¥rs} denotes an operator whose kernel is I'g(z — z')¢rs(z — 2'), and {Eoys} is
defined similarly.

'l/}rs(x - xl) = DPrs (l‘ - x,) — DrDs, (44)
where p,s(z — z') is the probability of finding simultaneously material r at z and
material s at z':

Drs(T — ml) = (Xr(x)Xs(z’»- (4.5)

It is a function of (z — z') only, on account of the assumed statistical homogeneity.
Since, for the present problem, To(z,z') = Ly'd(z — z'), the operator {Tgyr,}
has kernel Ly'd(z — =')¢rs(0) = Ly'6(z — 2')p, (675 — ps) (no sum on r). Therefore,
equation (4.2) can be solved, for a laminate, in parallel to the solution (3.6) of (3.2):

n
Tr = Z TysDsEs, (46)

s=1

where T, is as specified in equation (3.10).
In the Hashin—Shtrikman approximation, therefore,

(r) = z Pty = (L) = Lo)e) — (L) zz LH{LoEtra}peg.  (47)

This yields, as Hashin—Shtrikman approximations to L#f and R*f for the n-component
laminate, the expressions (2.27) ezactly.



5 Energy

The energy of the system comprising the composite and its loading mechanism is

&=-3 [ u(f +pg)ds, (5.1
and this has ensemble mean
(€)= =1 [ [@)(F + (0)9) + (ulo— ()] do. (5.2
As shown by Luciano and Willis (2000a), this can be expressed in the form
(&) = =4 [[(F+(R9)GF + (o)) — 2(f +(p)g) BT R
+g(S°" + RMT R*)g)| da, (5.3)

where G| B¢t and I'*® are defined like Gy, E} and T, except that LF replaces Ly.
The operator S°f is

S = {(p = (9))(Go — E{TEo)(p— (n))). (5.4)
Luciano and Willis (2000a) made the definition
vefl = goff ¢ (Ref)tref gef, (5.5)

The term V°f must be independent of Ly, because it was derived from expression
(5.2). In the context of a laminated medium, T is local but Ey is non-local. Therefore,
Seffand so also V°f, samples points in the medium up to three at a time. The
corresponding Hashin—Shtrikman approximation to S° (equation (57) of Luciano
and Willis (2000a)) is

SHS - zn: zn:(pr{GO"/)'rs}ps - zn: i (Trs{EO"pst}pt){EO"/)rk}pk)' (56)

r=18=1 t=1 k=1

This employs only two-point information and so cannot be exact, even though the
Hashin-Shtrikman approximation delivers the exact L°f and R°. By appropriate
choices of the modulus Ly of the comparison medium, the Hashin-Shtrikman approx-
imation provides bounds for V&, as discussed by Luciano and Willis (2000a).



6 Two phase laminate

In this section two phase laminates are considered and it is assumed that the elastic
moduli of the two phases are such that L; > L,. First, the exact expressions of L®f
and R°f are obtained. By using (2.27);, L*f becomes

(L1L2)

Leﬁ'= L—1+ L—l — )
(il +paly’) P1Lla + poly

(6.1)

On the other hand, R°f is a nonlocal operator that can be expressed via (2.27), as

_ (L1 - L2)(P1 - Pz)

Rf(z —2') = So(z — ), 6.2
(@)= B s ) (62
where
So(z — ') = —jsgn(z — 2')u(z — 2') (6.3)
and Y11 (z — ') is defined in (4.4). Further, in (6.2), the identities ¥11(z — 2') =
o (z — 2') = —h12(z — ') = —1hoy (z — 2'), valid for two phase composites, have been
used.

As explained in the previous section only bounds on the nonlocal operator Vof
can be obtained by using the Hashin—Shtrikman approximation. For this reason, two
reference materials will be adopted in the following.

First, Ly = L, is considered. In this case only T3, (see (3.10)) is different from

zero; it is equal to
1

T = (L) - L), (6.4)
Then, by using (5.6), the following expression for S§ is obtained
Sz — o) = %[Sg(gﬁ —)+ (((L—IZZZ— L)) (50 80) (@ - )], (6.5)
where * means convolution and
Sy(z — 2') = =Ltz — 2’| (z — 2). (6.6)

Finally, the Hashin—Shtrikman approximation to the nonlocal operator V°f delivers
the following upper bound

Vista ) = e =) - S IO 50, (o)
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and, hence, by substituting the expression (6.5) for S,

Vis(z—12') = (oo —p)? [——S" (:CL; z) +

(p2Lf — p1 L + (py — pa) L1 Ly)
p1Ly1Ly(pr Le + poLy)

+ (So*So)z—2)|. (6.8)

Here the notation of Luciano and Willis (2000a) is used: the superscript ~ indicates
that Ly is chosen as Lo, which is the smaller of L; and L, and yields in general a
lower bound for L, although in this case it gives L°f exactly.

Next, Lo = L is considered. In this case only T5; (see (3.10)) is different from

zero and it is equal to

Lor—1y-1 _
I = p—2(<L ) Ly). (6.9)

Then, by using (5.6), St becomes

(L)' =Ly
P%Ll

S (z — a') = M[S’g(m ~ ')+ )(So % So)(z — 2)]. (6.10)

L

This yields a lower bound for the nonlocal operator Ve

Vids(z — o) = Siy(z — o) - ((ZDI;IL;(;2I)/£pj-;Zi)))2 (SoxSo)@—3).  (6.11)

By substituting the expression (6.10) for S¢% this becomes

S R
Vise =) = (m-pp[HE2Ty
(poL2 — p1 L3 + (p1 — pa) L1 Ls) ,
B So* So)(z — )], (6.12
szle(ple + szl) ( 0 0)(.’1,‘ )] ( )

The operators R*T and the upper and lower bounds on V¢ can be expressed easily
in the Fourier domain if the Fourier transforms of Sy and S, are known. It turns out
that, since R°*T is odd, its Fourier transform is imaginary. On the other hand, the
Fourier transforms of Vi7g and Vi are real.
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7 Example

In this section a periodic laminate, characterized by two phases with volume fraction
p1 equal to 0.4 and period p = 2 is considered.

Appendix A records the expressions of the Fourier transforms of the characteristic
functions and of the two point correlation functions for periodic laminates, together
with other useful relations corresponding to the particular laminate considered in this
section. In the computations the elastic moduli and the mass densities of the two
phases have been taken to be equal to E; = 16, Ey = 8, p; = 200 and p; = 100.

The Fourier transforms G*f(k), Rf(k), Vi (k), and E°T(k)R(k) have been
calculated using the formulae obtained in the previous section and Appendix A.

The result for R*f(k) is displayed in Fig.1 even though the operator R°f is given
exactly by (6.2) and (6.3), because no previous work has identified this operator.
Figure 2 gives the upper and lower bounds Vjg(k) and Vig(k) for V&(k). The
singularities shown in both of these figures are a consequence of the periodicity of the
medium.

Boutin (1996) formally developed solutions for periodic media subjected to configuration-
dependent body force, following the methodology of periodic homogenization (Bakhavalov
and Panasenko, 1984). However, presumably because of difficulty of interpreta-
tion, he presented fully explicit results for a periodic laminate, only in the case of
configuration-independent body force (f # 0, ¢ = 0 in present notation). Thus,
he gave explicit formulae for components of the tensor LT, developed in a gradient
approximation valid for gradually-varying mean fileds, as far as second gradients.
The components L%, LE ., L¢i ., corresponding to the cases of loading consid-
ered here, contain no terms involving derivatives with respect to z; = z, consistent
with the exact result (6.3). If, however, body force is applied which varies in the z,
and/or z3 directions, even the components LT, LS . 18 . become non-local. The
Hashin-Shtrikman methodology of Luciano and Willis (2000a) provides bounds for
their Fourier components. Figure 3 displays bounds for <), (0, k2, 0), corresponding
to a body force with components (0, fo(z2),0). The bounds coincide in the local ap-
proximation, corresponding to ks = 0. Their asymptotic development for |ks| << 1,
up to order k3, is consistent with the result of Boutin (1996). A more complete
discussion of bounds for periodic composites (not just laminates) will be presented
separately (Luciano and Willis, 2000b).
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Appendix A: Relations related to periodic laminates

This appendix develops some relations and examples useful for laminates with periodic
microstructure. Consider, therefore, a laminate composed of two phases in a periodic
arrangment with period p. For convenience, the length scale is chosen so that p = 2=.
It follows that the characteristic functions and the two point correlation functions
which characterize the geometry of the laminate, are periodic with period 27.

The laminate, even though exactly periodic, is taken to be random in the sense
that the exact location of any one interface is unknown. The characteristic function
X1 is taken to depend on a parameter o that locates an interface. Then, with a slight
compression of notation,

x1(z,0) = x1(z + ,0) = xa(z + @) = Y 1 ()X (A1)
(€Z

12



where Z denotes the set of integers, 1(¢) is the { — th Fourier coefficient of x; and o
indicates the single realization of our laminate. The random variable « is taken to be
uniformly distributed on [0, 27]. Then, via (4.3), the two point correlation function

P11 is

pu(z—1z') = 2:; / x(z + a)x(z' + @) da, (A.2)
and so, from (A.1),
pu(x - iE) = Z x1(¢ C)G’C(z “) (A.3)
ez

Correspondingly, the function %;;(x) of (4.4) can be expressed in the Fourier series:

Yu(z)= Y Pu(Qe™ = Y z()xi(—¢)e". (A.4)
cez—{0} ¢ez—{0}

The Fourier coefficients of the series (A.4}, for a laminate, are:

P11(¢) = %1(OFx(—¢) = (Sm(plo)- (A.5)

¢
Further, if the Fourier transform of any function f is defined as
= /f(:c)e_“”dx, (A.6)
it easy to prove that the Fourier transform of v, (z) is
11311("3) = Z 1,1111 6(k O (A-7)
¢ez—{0}
where & denotes the Dirac function. Then, the Fourier transform of Sp(z) = —isgn(z)yn:(z)

and Sy(z) = —%|$|T/)11(IE) can be expressed by using (A.7). In fact, since the Fourier
transform of sgn(z) is —2 with ¢ = /=1 we have
~ 7 ~ 1 ~
So(k) =z *yu(k) =1 3. Z—=¥ul(0), (A.8)
k ¢ez-{0} (k - C)

where * denotes convolution with respect to k. Analogously, since the Fourier trans-
form of |z| is —%, we have

Sy(k) = *'/)11( )= =11 (()- (A.9)
L T
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Finally, the Fourier transform of Sy(z) = §(z)vy;(z) is:

,5~‘7(k) = > $11(¢) = ¥11(0) = pypo. (A.10)

¢ez—-{0}
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