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ABSTRACT

Keller’s phase interchange relation which computes the overall conductivity of a two di-
mensional checkerboard with alternating conductivity is revisited in the context of nonlinear
incompressible elasticity. A general phase interchange relation is obtained in a monotone
setting through H-convergence and in a convex setting through variational methods. Sev-
eral Keller-like applications are presented.

1 INTRODUCTION

Duality or interchange relations are viewed as a precious tool in the study of the
overall properties of heterogeneous media. They will indeed deliver explicit formulae
macroscopically linking together apparently unrelated mixtures.

The archetype of such a relation is the so—called Keller phase interchange relation
[10]: A conducting checkerboard with alternating conductivity o and 3 has /a8 as
overall conductivity.

This result was the starting point for a flurry of activities concentrating on the
2—-d conductivity case or on a related topic, that of 2—d incompressible elasticity.



Let us mention for example that the effective shear modulus of an isotropic 2-d,
two—phase mixture with isotropic incompressible phases of respective shear moduli
p and p' is \/upy’ (Lurié-Cherkaev [14]). The interested reader is refered to e.g.
Benveniste [1] in the conductivity case and to Helsing, Milton and Movchan [9] in
the elastic case.

The structural resemblance between those two settings should not come as a sur-
prize; see Francfort [5] for a more abstract analysis of that correspondence.

Non linear contitutive behavior is a road far less traveled as far as duality relations
are concerned. In the conductivity case, a recent systematic exploration of duality
was undertaken in Levy and Kohn [12]. Of notable interest is their recovery of a
curiosity evoked in Kozlov [11]: the overall behavior of a non—ohmic checkerboard
with dual power-law behaviors is ohmic with overall conductivity 1!

Our goal in the present paper is to pursue the investigation in the context of 2—d
nonlinear incompressible elasticity. Our analysis is limited to the case of monotone
constitutive behaviors. In other words, it is assumed that the stress—strain relation
is of the form:

oc=pi+s, s=A(ze(u)), (1.1)

where o is the actual stress field, p is the pressure field, % is the identity matrix and
s is the deviatoric stress field which satisfies

—div 8 = f + grad p.

In addition e(u) = 1/2 (grad u + grad u") is the linearized strain associated to
the incompressible displacement field w (div w = 0), and A (x,.)) is, for each @, a
monotone mapping. Alternatively, o can be viewed as

ow
o= % (:B, e(u)) ’

where w(z, €), the elastic energy density, is assumed to be convex with respect to e
and equal to +oo if tre # 0.

This bipolar viewpoint is reflected in Sections 2, 3 and 5 which respectively handle
monotone constitutive laws and convex energy potentials. Specifically, Sections 2
and 3 are devoted to the monotone case. The setting is very general — no assumption
of periodicity, or restriction on the number of phases — and the duality relation is
established rigorously using the tools of H-convergence (Murat and Tartar [16]). The
main result is Theorem 3.1; see also the following remark (Remark 3.2). Section 4

2



is devoted to two applications of theorem 3.1. In the first application two—phase
isotropic mixtures of power—law materials, .e. materials with

s=ofleff e, resp. FPleff%e, 0<a,fB<+o00, 1<p<+oo, (1.2)
as constitutive relation, are investigated. It is then known that, in dimension 2, the
resulting macroscopic behavior is also of the form

8= a’p(aa /Ba p) !elp—2 €,

with a(e, 3,p) depending on o, 8,p and the material distribution of each phase.
Then, if a(8, a, p’) denotes the coefficient corresponding to the macroscopic behavior
of a two—phase isotropic mixture with constitutive relation

P

s=0lef e, rep. ol e, p=_T,

we obtain that (cf. (4.4))

a(e, B,p) (B, a,p)) = a B,

which is a generalization of the two—phase incompressible polycrystal studied in
Lurié and Cherkaev [14] and Helsing et al [9].

In the second application, it is shown, in the spirit of Kozlov [11], that nonlin-
early incompressible elastic mixtures which are self-dual behave macroscopically like
a linear material with shear modulus 1/2, a generalization of the conductivity result
in Levy and Kohn [12] to the incompressible elastic case.

Finally, Section 5 investigates the variational standpoint, i.e. that where convex
elastic energy densities are considered. In that section we favor simplicity over rigor
and propose a fast derivation of the analogue of Theorem 3.1, namely Proposition
5.3. We finally conclude this study by revisiting the self-dual setting of Section 4
when both phases have Holder—conjugate growth properties and rederive a similar
result in that context. The proposed derivation could be rendered rigorous at the
expense of an extensive use of ['-convergence results of the type found in Braides
and DeFranceschi [3].

Before closing this introduction we specify the notation. In all that follows,
tensors are denoted by bold face letters. My denotes the subspace of all symmetric
matrices on RV (R¥*) that are trace free. If a,b are two vectors in RY, a ®, b =
1/2(a®b+b®a). If u is a RY—valued vector field on RV,

e(u) =1/2 (grad w + grad u'") ,



while if e is a RY” - valued field on R, comp(e) is the R¥"~valued field defined as
02€,;j Bzekh _ 628ik - 62€jh
dzxdzp  Ox;0z; Ox;0xn,  Oxidxy

Remark that, when N = 2, all components of comp(e) are identically 0 except

comp(e);122 = comp(e)ae; = Fen + Fex —2 e we will thus loosely identif
P{€)1122 = p{€)2211 = 022 022 971075 M y

comp(e);jkn =

comp(e) with that component. The curl of a R?2~valued field v is the scalar—valued
field defined as
3’02 Bvl

lov=— - —.
curl v 5o, 9y

Finally — will always denote convergence in the strong topology, whereas — will
denote that in the weak topology. We assume familiarity with the usual Sobolev
spaces.

2 HOMOGENIZATION RESULTS IN INCOMPRESSIBLE ELASTICITY WITH
POWER-LAW TYPE CONSTITUTIVE BEHAVIOR

Consider an e-indexed sequence of elasticity functionals of power-law type. Specif-
ically a sequence A° of Caratheodory functions from RV x My into My is introduced;
Af(x, .) is further assumed to be a monotone invertible mapping from My into itself
that satisfies, for some 1 < p < +o00,

(A%(z, A) — A%z, p)) . (A—p) 2 ald—pf,
(2.1)
(A =, A) — (A) Nz, ). (A—p) 2 BHA—pf",
with0<a < f<+4ooand 1/p+1/p' =1.

Let  be a fixed bounded and connected domain of RY with smooth enough
boundary 052, so that Korn’s theorem holds true on LI(Q;RY), 1 < ¢ < +o0o. We
recall that Korn’s theorem asserts that, for 1 < p < +4oo, if u € W=H(Q;RY)
and gradu € W~-29(Q; RY?), then u € LI(Q;RY), provided that 89 is smooth
enough, while Korn'’s inequality asserts that [|ull ,qpwy + ll€(w)l] 1oqznzy is, on
WLe(; RY), a norm which is equivalent to %]l 1.0y (see Geymonat and Su-
quet [8] for a proof of Korn’s theorem and Korn’s inequality on LI(Q; RY)).

Then, if f € W=7 (Q;RY), the problem
—div A® (z,e(u®)) = f+gradp® inQ,

divu®* = 0 in Q (2.2)

ut = 0 on 0€,



admits a unique solution (u?,pf) in PVol”é’iVo (Q) x L7 (Q) /R where
Wk (@) = {v € WP @ RY); div v =0},

The existence proof for u® results from a classical theorem for coercive monotone
operators on closed convex sets in reflexive Banach spaces (Theorem 8.2 in Lions
[13]). Note that the coercivity is checked through the use of Korn’s inequality on
Wy (Q; RY). Then the first equation of (2.2) is used to define the pressure field p°
in W~17(Q) which is found, via Korn’s theorem, to be in L (Q).

As € varies, a homogenization result in the spirit of Murat and Tartar [16] can
be derived. Let us define H,—convergence as follows in the present context.

Definition 2.1 : A sequence A® satisfying (2.1) H,—converges to A satisfying (2.1)
(AE He A) if and only if, for any bounded and connected domain Q of RY with, say,
C*™ boundary 99, and any f in W17 (Q; RY) the solution (u®,p?) of (2.2) is such
that
u® — u in WWP(Q;RVN),
P — p in IF(Q)/R,
Af(z,e(u®)) — A(z,e(u)) in L¥(4RY)
where (u,p) is the unique solution in PV(},’fiUO(Q) x I”(Q)/R of
—div A(z,e(u)) = f+gradp inQ,
divu = 0 in £,
u = 0 on J9.

Then, the following theorem can be proved:

Theoreml 2.2 : If A® is a sequence that satisfies (2.1), then there exists a subse-
quence A® ({e'} C {e}) and A satisfying (2.1) such that

AR 4

Remark 2.3 : It is not our purpose here to produce a proof of Theorem 2.2. The
interested reader is invited to consult the literature. In a scalar setting (namely that
of nonlinear conductivity), the same theorem is proved in Murat and Tartar [16] in
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the linear case, in Tartar [19], Murat [15], Chiado-Piat, Dal Maso and DeFranceschi
[4] in the monotone p = 2 case, and in Fusco and Moscariello [7] in the monotone
p # 2 case. An extension to the nonlinear but monotone compressible elasticity
setting can be found in Suquet [18] (in a periodic framework and for p = 2). An
actual proof of Theorem 2.2 cannot be found, to our knowledge, in the literature. It
would however easily follow from the proofs given in the above mentioned references.
The key difference stems from the incompressibility constraint which requires the
following L” (Q)— estimate on p*,

1 1 oy e < NlErad Pl 1 (0, gy, (23)

itself a direct consequence of Korn’s theorem on L? ().

Next we introduce the notion of deformation—correctors.

Proposition 2.4 : For any A € My, any bounded and connected domain Q of RY
with C* boundary 00, and any H,—converging sequence A°, there ezists a pair—
sequence (P¢(x, ), p°(x, A)) in LP(Q; My) x LP () /R such that

Pé(x,A) — A in LP(; My),
(2.4)
p°(z,A) — 0 in LF(Q)/R,
with further
Af(z, P5(z,\)) = A(z,\) in L7 (Q; My), (2.5)
while
comp[P*(x,A)] € compact of W~22(; RV"),
(2.6)
div A*(x, P*(x,A\)) + grad p°(z,A) € compact of W1#' (Q;RV).

Further, local uniqueness holds, i.e., if a pair—sequence (135(:1:, A), P (z, A)) satisfies

P'(z,A) =X in (% My), F(z,A)—=p(z,2) in L7 (Q)/R o
2.7
As(z, P°(x,\)) = B(z,A\) in LF (Q;RY),

together with (2.6), then
p(z,A) =0, Afz,A) = B(z,A),

(PF— P,ps =) = 0 in L], (% My) x L,

(@)/R

loc



Proof: Imbed Q into a ball B(0, R); solve on D(0,R) = B(0,2R)/B(0, R) the
following Stokes problem for (d, ¢) :

—~Ad = gradq in D(0,R),
divd = 0 in D(0, R)

dlsBory = Az, d|ap(o2r) = 0.

Then, upon setting

X A.z on B(0,R)
d(z) = {

d(z) on D(0,R),
we define (P*(z, ), p*(x, \)) as

Pi(z,)) ¥ e(w(z, X)), (28)
where (we(x, A), p°(x, A)) is the solution in W()l”dpivO(B(O, 2R)) x L* (B(0,2R))/R of
—div A (z,e(w®)) = —divA (:1:, e(&)) +grad p°  in B(0,2R),
divw® = 0 in B(0,2R) ( (29)
w = 0 on 0B(0,2R). |

Then, since A® H,—converges to A,
w® — w  in WY (B(0,2R); RY), }

¥ — p  inI”(B(0,2R))/R,
with (w,p) unique solution in W%, (B(0,2R)) x L” (B(0,2R))/R of

divg
—div A (z,e(w)) = —divA (.'1:, e(&)) +gradp in B(0,2R),
divw = 0 in B(0,2R), (
w = 0 on dB(0,2R). |

Thus w = d and p = 0 modulo a constant, hence w|q = A.x, plo =0, i.e.,
Pé(z,A) — X in LP(Q; My),

pe(z,A) — 0 in L7 (Q)/R,
Af(z, P5(x,)\)) — A(z,\) in LF(Q; My),
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which is precisely (2.4), (2.5) while (2.6) is satisfied in view of (2.8) (2.9).

Finally, let (135(:1:, )\),155(:1:,)\)) satisfy (2.4) (2.6) and (2.7). Then, for any ¢ €
Cr(®) p
7= 2/p ( pe _ P
@ h?‘”‘" (P (@A) - P ("”)‘)) H LP(; My)

<Tim L ¢ (4@, P*(, X)) - A%(z, P'(z,))) . (P*(z,2) - P (s, %)) da

=Tm /Q 2 ({Af(a,-, P(z,\) + p°(z, N)i} — {A%(z, P'(z, N)) + 5 (=, A)i}) .

(P, ) - P'(a, A) da.
(2.10)

An elementary application of compensated compactness (Tartar [20] or Francfort
and Murat [6] in the specific context of linearized elasticity) permits to pass to the
limit in the last term in (2.10) and to obtain that

Pi(z,A) — P°(z,A) > 0 in I? _(Q; My),

from which it is immediately deduced that A(a, A) = B(a, A) and by application
of estimate (2.3) in Remark 2.3 that

p(x, A) — (e, A) > 0 in LE

loc

(Q)/R
The proof of Proposition 2.4 is complete.

Stress—correctors are in turn defined through the following

Proposition 2.5 : For any XA € My, there ezists a pair-sequence (Q°(x, A), ¢*(x, A))
in LP (Q; My) x L” (Q) /R such that

Q°(z,\) — X in LP'(Q;MN),}
(2.11)
¢(z,A) = 0 in IF(Q)/R,
with further
(A5 (z, @ (=, A)) = (A) 7" (z,A) in LP(Q; My), (2.12)



while

div Q(x, \) +grad ¢° € compact of W1 (Q;RV),

(2.13)
comp[(A°) ™" (z, Q°(x, A)] € compact of W=2P(Q; RV).

Further local uniqueness holds as in Proposition 2.4.

Proof: We consider the solution w*(x, A) of the following system

—div A® [z, e(w®(z, ) + (A) "} (z,N)] = grad ¢ in Q,

divw®* = 0, inQ
’welan = 01
and set .
Q(z,\) Y A° [z, e(w(z, A) + (A) (=, N)]
so that

div Q° (z,A) + grad ¢¢ =0 in , }
(2.14)
(A°) 7 (=, @ (z, A)) = e(w(z,A)+(A)"}(=,A),

hence (2.13) is satisfied. Further we(z, A) is bounded in W, ?(Q;RY), thus, for a
subsequence (w®(z, A), Q°(x, A), ¢°(x, A)) still indexed by e,

w{z,A) — w(z,A) in WP(Q;RY),
Q(z,A) — Q(z,A) in L¥(; My), (2.15)
¢*(z,A) = q(=,A) in LF(Q)/R
and
(A5 (2, Q% (2, A)) — e(w)(z, A) + (A) Y (z,A) in LP(Q; My). (2.16)
We now compute Q(x, A). Take an arbitrary v € W()l,,apivo (©2) and solve for (v¢, )
—div A® (z,e(v®)) = —div A(z,e(v))+grad r® in ,
divevt = 0 in(,

'Uelag = 0.



so that, since A° H,—converges to A,
v — v in WyP(Q;RY),
As(z,e(vf)) — Az, e(v)) in LP(Q; My),
r¢ = 0 in”(Q)/R
Take ¢ > 0 in C$°(2). Then, by virtue of the monotone character of A?,
0 < lim, [, (Q(z,X) — A%(z, e(v7))) . (e(w?) — e(v®) + (A) 7 (z, A)) dz
= Joe(Q(z,A) — Az, e(v))) .(A) 7 (z, A) do
+1im, { [, (Q(z, X) — A%(z, e(v7))) . (e(w®) — e(v%)) dz
+ [o, p(¢f — r¢) (divw® — dive®) da}
= o2 (Q(z,A) — Az, e(v))) .(A) 7 (z, A) de

+ Jo v (Q(z, X) — A(z, e(v)) + gi) .(e(w) — e(v)) d,
(2.17)

where the first equality holds since w® and v*® are divergence—free fields while the
second is easily obtained through an elementary application of compensated com-
pactness. Since w and v are divergence—free, (2.17) finally becomes

0< [ 2@ - A, e®)- (efw) + (4)(@ 3) - e(v)) da.
and, since ¢ is arbitrary,
(Q(z, ) — Az, e(v))) . (e(w) + (A) " (z,A) —e(v)) >0, ae onQ. (2.18)
Choosing, for zo €  such that A~!(ay, .) is continuous and divw(zo) = 0, E € My,

v(x) =

(e(w)(xp) + (A)"1(zp, A) + tE) .z in a small ball around =z,
0 on 052,

(which is always possible by a construction similar to that which led to (2.7)), the
continuous character of A~'(zo,.) yields

[Q(z0, A) — A (20, e(w) (z) + (A) (20, A))] .E = 0.
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But y and FE are arbitrary and Q(xo, A) € My. Thus

Q(z,A) = A (z, e(w)(z) + (A)"(z,A)) ae. on (2.19)
Passing to the limit in (2.14) yields, in view of (2.15),(2.19),

div A (z,e(w) + (A)~}(z,A)) +grad ¢ =0 in Q,

divw =0 in €,

wlan = 0.
which admits as unique solution

w=0, ¢g=0 (moduloR). (2.20)

Thus (2.16) reads as

(A9) 7 (=, Q° (=, X)) = (A) 7' (=,A) in LP(Q; My),

and (2.12) is satisfied, while (2.11) is a direct consequence of (2.15) and (2.20). Note
that since (w, ¢, Q) are uniquely defined there is no need for subsequence extraction
in (2.15). The existence of stress—correctors is established. Local uniqueness would
follow by an argument similar to that used at the end of the proof of proposition 2.4.

3 DUALITY RELATIONS FOR INCOMPRESSIBLE NONLINEAR ELASTIC MATERIALS
IN DIMENSION 2

We now specialize the dimension to be N = 2. Consider an initial material with
8 = A (x, e(u)) as stress—strain relation. The dual material is defined as that mate-
rial with 8 = (A) ™" (, e(u)) as stress-strain relation, where A~!(z, A) is for every
the inverse of A(, \) as an operator on My. For instance, if Az, A) = o |A[P> A,
then A~ (z,A) = |A]P 72X, with 1/p+1/p/ = 1.

The aim of this section is to derive a general relation between the H, — limit of
the initial sequence of operators A*(x, A) and the H, — limit of the associated dual
sequence of operators (A°) " (z, A)).

Consider the linear mapping R from M, into itself defined as

’R(U T)déf<—7' 0')
T —0 o T
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Note that R~! = R" = —R. Also note that, if S(z) is a M>—valued distribution,

comp (RS) = —curl (div S), }
(3.1)
curl (div (RS)) = comp (S).

Further, if A(z, A) is a Caratheodory function from R? x M, into M, that satisfies
(2.1) for some 1 < p < 400, then the mapping A defined as

Az, ) D R (A (z,~Rp), =R, pe M, (3.2)

satisfies, for all p, v in M,

(A, 1) - A, ). (u=v) 2 57 - vl
(3.3)

A =1

"l
(A @w-Aa" @) . (b-v) 2 alu—v].
Remark that A_l(m, u) =RA(x,—Ru).
Consider now a sequence A° satisfying (2.1) that H,—converges to A satisfying

(2.1), and, for any A € M,, the associated stress—correctors (Q°(x, A), ¢°(x, A))
satisfying (2.11)-(2.13). In view of (3.1), RQ°(x, A) satisfies

RQ(z,\) = R in LP (Q; My), (3.4)
comp [RQ°(z, A)] = —curl (div Q°(z, X))
(3.5)
= —curl (div Q°(z, A) + grad ¢°(x, A)) € compact of W27 (Q; R),

A’ (2, RQ%(z,\)) = A (=, RA)  in LP(Q; My), (3.6)
curl (div A (2, RQ(x, ,\))) — comp [(A°) (2, Q% (z, \))]

€ compact of W=2P(Q); R),

where A° and A are defined from A° and A in (3.2). But if D? is in W~12(Q; R?)
(where 2 is a smooth connected open set) and if curl D° belongs to a compact set of
W~-2P(Q); R), then there exists a field d° in LP(Q) such that D — grad d* belongs to
a compact set of TW=1P(Q2; R?). Note that the existence of d* uses once again Korn’s
theorem of L?' (Q2) and (2.3) with p’ replaced by p.
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Thus, there exists p* in L?(£2) /R such that
div A" (¢, RQ%(z,\)) + grad p°(x,A) € compact of W™P(Q; M),  (3.7)

But in view of (3.3) applied to AE, a subsequence of AE, denoted by Aej, Hy—
converges to C satisfying (3.3). By virtue of (3.4), (3.5,) (3.6), (3.7) and the local
uniqueness in Proposition (2.4), (RQ% (x, A), % (z, X)) is, for that subsequence, a
deformation—corrector — with respect to RA — and thus

~

A(z,R\) =C (z,R\). (3.8)

Since the Hy~limit C is, in view of (3.8), independent of the extracted subsequence,
the whole sequence A" (z, RA) Hy—converges to A (x,RA). We have proved the
following

Theorem 3.1 : If A* H, —converges to A and N = 2, then

Az, p) € R(A%) (x, —Rp)

Hp —converges to

Az, p) € R(A) (z,~Ru).

Remark 3.2 : Note that the action of the linear mapping R on an element X of
M, may be rewritten as

RE=R"ZR, -RY =RIR',

where R = % ( _1 i ) is the rotation matrix associated to a rotation of /4 in

the plane.
In such a setting, Theorem 3.1 reads as

H_,

RT (A% (z, RuR")R X RT (4)™" (z, RuR")R.
In mechanical terms, the homogenized behavior of the dual composite is the dual
of the homogenized behavior of the initial composite, provided that the microscopic
and macroscopic deformations are rotated by w/4.
4 'TwO APPLICATIONS OF THE DUALITY RELATION

This short section is devoted to two applications of Theorem 3.1.
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4.1 Two—phase isotropic miztures of incompressible power-law materials

Assume that, for some 1 < p < 400,
AS 5@, ) = (@x° (@) + (1 — X ())) AP 2 A, (4.1)

where 0 < a < 8 < +o00 and ¢ is a sequence of characteristic functions on R2.
Assume further that A‘;,ﬂ,p H,—converges — which is always the case, up to the

possible extraction of a subsequence, according to Theorem 2.2 — and that the

Hy-limit A, g, is isotropic. Thus, in dimension 2, A, g, reads as (see Boehler [2]

for instance)
Aa,ﬂ,p(w, A) = (pli + (,02A, i = QO,-(:B, tI‘A,tI‘AQ), tI‘Az = |A|2 .

It follows from the incompressibility constraint that ¢; does not depend on trA.
Then, a simple dilation argument would show that A, s, is positively homogeneous
of degree p — 1 in A. A, g, finally reads as

Aavﬁ,p(m’ A) = ap (m’ a’ /37p) iAlp_z A’ (4.2)

for some measurable function a, with o < a(z,a,8,p) < B. In all rigor the
above derivation presupposes some degree of smoothness on A, g,(,.); a scrupu-
lous reader is thus at liberty to postulate the form (4.2) for A, g p.

In such a setting A, s,(2, 1) defined in (3.2) reduces to

~

Aagp(@ 1) = (a7 X (@) + 57 (1 —x () Il s,

with 1/p+ 1/p’ = 1. Theorem 3.1 asserts that

~

H. ! /_
Aaaﬂap(w’ ”)) J a P (w’ a’ ﬂ’p) I,‘lllp 2”‘

But
€ ]. ’ ; ’_
Agpp(T 1)) = (aB)” (ﬂp X*(z) +a”(1- ’(E(m))) Il ‘p= Ap oy (T, 1)),
1 , /
which thus H,—converges to -a” (z, 8, a,7) |plP 2 .

Remark 4.1 : It is here implicitely assumed that the microgeometry — the se-
quence x°(x) — is such that any H,-converging sequence of the form (4.1) has an
isotropic H,-limit, for any admissible triplet «, 3, p.
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We thus obtain the following duality relation

a(z, o, B,p) a(z, B,a,p) = a B. (4.3)

Finally, if the microgeometry is invariant under permutation of the phases, (4.3)
becomes

a(e, B,p) a(e, B,p) = B. (4.4)

As such, (4.4) is a generalization of formula (2.46) in Helsing et al[9]. In particular
if p = p’ = 2 we obtain as overall shear modulus

a(a, B,2) = vap,

as already observed in Lurié and Cherkaev [14] (see also formula (2.47) in [9]).
4.2 Two-phase macroscopic interchangeability with m/4 macroscopic invariance

We call self-dual a material which is its own dual in the sense of the beginning
of section 3, that is a material such that its stress—strain relation satisfies

Az, A) = A (z, N). (4.5)

But (4.5) immediately implies that A(z, A) = A. Thus the only self-dual material
is the linear incompressible and isotropic material with shear modulus 1/2 (recall
that the shear modulus p of a linear isotropic material is defined as s = 2y e).

We now investigate the existence of self-dual mixtures. Consider a two-phase
mixture, the stiffness of which is given by B(A) in phase 1 and B~'()) in phase 2,
i.e.,

A%(z, ) = x“(2) B(A) + (1 - X°(=) (B) " (). (4.6)

In (4.6), B()) is assumed to satisfy (2.1) with p = 2, so that B™'(\) also satisfies
(2.1) with the same p. We also assume microscopic 7 /4 material invariance that is

B(RART)=RB(MR', e M. (4.7)

Note that (4.7) also holds true if B is replaced by B~'. Define the interchanged
mixture as that where the phases are interchanged, that is,

A'(z,2) = x(2) (B) ' (A) + (1~ x*(2)B(A) = (A7) (=2, A);
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the interchanged mixture then coincides with the dual mixture. Assume — which
is, as already seen several times, no restriction — that

A(z,2) B Az, M),
A(z, ) 22 Az, N).
Now, in view of (4.7), A"(z, A) defined in the previous section satisfies
A'(z,2) = A" (z,\),
so that upon application of Remark 3.2
RTA Yz, RART)R = A(z, )). (4.8)

If the mixture is interchangeable, 1.e., if

Az, A) = A(z, A), (4.9)
we thus obtain that
RTA7Y(z,RART)R = A(z, )). (4.10)

If in addition the mixture is macroscopically invariant by rotation of 7 /4, (4.10)
implies that it is self-dual hence that A(x, A) = A. This result is along the lines of
similar results in Kozlov [11] or in Levy and Kohn [12] for the conductivity case.

Remark 4.2 : The reader is referred to (5.15) in Section 5 for a similar example
in the case of behaviors with non-quadratic growth. Note however that Theorem
3.1 cannot apply in the latter setting for want of an estimate of the form (2.1) on
the constitutive law.

5 THE DUALITY RELATION VIEWED FROM AN ENERGETIC STANDPOINT

This section may be seen as a revisiting of Section 3 in a variational framework.
We do not attempt here to provide full mathematical justification for the argument,
but rather strive for an expeditious derivation of the analogue of Theorem 3.1.
We further assume that all mixtures are periodic, so that the relevant macroscopic
behaviors — the corresponding I'-limits — are homogeneous, i.e. do not explicitly
depend upon the spatial variable x.

The microstructure is then defined on the periodic cell Y = [0,1]? through its
elastic energy w(zx, €), a R-valued, convex Caratheodory function on Y x R? such
that w(z, e) is finite if and ouly if e € M,.
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The effective primal and dual energies are given, for any £, ¥ in M, by

W(E) = Inf{/ w(z, e(v))dz, v = E.x + v*, v* periodic, div v* = 0} , (5.1)
Y

W*(X) = Inf{/ w*(z,8) de, s=X+s*,
14

[y 8* de =0, s*.n antiperiodic, div 8" = 0}.

(5.2)

In (5.2), w*(z, 8) is the Fenchel transform of w(x, e) with respect to e and n is the
outwardly directed normal to JY.

Remark 5.1 : Under appropriate growth and coercivity conditions the heuristic
homogenization process above can be fully justified in the context of I'-convergence
(see e.g. Braides and DeFrancheschi [3], ch. 14 and references herein). For example
it suffices to assume that

alelf <w(x,e) <p(1+|ef), e M, (5.3)

with 1 < p < +o00, in which case W is the integrand associated to the I'(L?)-limit

of/}/w(m/e, e(u)) dz.

Remark 5.2 : Since w takes the value 400 outside Ms, it is easily seen that
in (5.1) (5.2), w can be restricted to elements of M;, while w* does not depend
on trs, or, in other words, w is a function of ej;, e while w* is a function of

1/2(s11 — 822), S12-

Let us further investigate (5.1) and (5.2). A divergence-free vector v* on Y can
be expressed as

dp . __Op
= — Vg = —%—,

63:2 6$1
with ¢ defined on Y; since v* is periodic, ¢ may be further chosen to be such that
gradyp is periodic. Thus, in view of Remark 5.2, (5.1) can be replaced by

P, 10 O
8z,0z," ' 2° 022 0x?

v

W(E) = Inf/ w (:I:,En + )) dz,1dzs,

y (5.4)

w such that grad ¢ is Y — periodic.

In a similar manner a divergence-free tensor field s* on Y can be expressed as

. . B

st =—=, §,=-— sk, = :
1 gg27 12 0r,0m,” 2 Ox?
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From the condition that fy s* dz = 0 and that s*.n is Y-antiperiodic on dY’, it is
easily deduced through straight integration that grady must be Y—periodic. Thus,
in view of Remark 5.2, (5.2) can be replaced by

. 1 Y 0%y e
w (fﬂ, 5(211 — Yoo + 3_3:% — B_x%)’ X — axlaxz) dz,

W*(S) = Inf /

Y

¥ such that grad v is Y — periodic.
(5.5)

Define, for any e in RY,
w(x, e) = w*(xz, ReRT), (5.6)

where R is the rotation matrix of angle 7/4 introduced in Remark 3.2. Then the
associated effective primal energy is, for any E in M, defined as {(see (5.4))

2 2 2
W(E) = Inf/yt?; (m,Eu + %; 12 %(g—;g - g—;g)) dz, 6
@ such that grad ¢ is Y — periodic.
Thus, in view of (5.6), (5.7) reads as
2 2 2
W (E) = Inf/yw* (:z: B+ %(279; - 27?); —Ep - aing) de, .
@ such that grad ¢ is Y — periodic.
But, according to (5.5), (5.8) is exactly W*(RERT). Thus
W(E) = W*(RER). (5.9)

In other words we have established the following result, in the context of periodic
homogenization,

Proposition 5.3 : Let w(x, €) be a R-valued convezr Caratheodory function on'Y X
R with w(z,e) = +oo if tre # 0. If W(E) is, for any E in M, the effective
primal energy associated to w(x,e), then the primal energy associated to w(e) =
w*(ReRT), seen as a primal energy (and not a dual energy) is W*(RERT).

Remark 5.4 : The above result would still hold true for any kind of boundary
conditions on dY, as long as Hill’s lemma also holds true ([17]).
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Remark 5.5 : Note that this result is consistent with that of Theorem 3.1. Indeed,

if
_w
then
Az, \) = g'g( JA) = RTa;g( ,RARTR =R"A7}(z, RAR")R.

Remark 5.6 : In the context of Remark 5.1, Proposition 5.3 can easily be turned
into a theorem on the I'(L?)-limit of [, w(x/¢, e(u) dz under the same hypothesis
(5.3).

Remark 5.7 : In mechanical terms the dual composite (i.e., that with elastic
energy density w*(z, e)) has for effective behavior the dual of the effective energy
density provided that the macroscopic and microscopic deformations are rotated by
7 /4.

We close this section with two applications of Proposition 5.3. The first applica-
tion deals with a periodic two-phase composite; both phases are power-law materials
with the same exponent p and material constants « in phase 1 and § in phase 2
An in-plane shear deformation

E=E12(81®62+62®31)

is applied. The homogenized strain and stress energies of the composite read as
1 11 1 1
IV(E) = — a” |E12|p, W*( ) == |212|p -+ == =1.
p 2

The dual composite is made of power-law phases with exponent p’ and material
constants 1/a and 1/ respectively. The rotated strain reads

RER"=E;(e;®e —e;3Qey),

and the strain energy of the rotated dual composite reads as

a 1 aml 4
W(E) = ? ap |E12|p

It follows from Proposition 5.3 that é = 1/a.

The second application considers a setting similar to that of Subsection 4.2 in a
non-quadratic framework. Specifically it is assumed that

w(z, e) = x(z)z(e) + (1 — x(x))="(e), (5.10)
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where 2(e) is a convex elastic density on R}, finite on and only on M, and x(x) a
characteristic function on Y. Further, we assume that

z(ReR") = z(e), e € M, (5.11)

where R is, as before, the rotation matrix of angle 7/4. Finally we assume inter-
changeability, i.e., that upon setting

w(z, e) = x(z)z"(e) + (1 — x(x))z(e),
we have
W(E) = W(E), (5.12)

where T is the effective primal energy associated to @ through (5.1) (or (5.4)).
Thus, in view of (5.11) (which also holds true for z*)

w(zx, e) = w(z, e),
so that,
W(E) = W(E). (5.13)

But, according to Proposition 5.3 and equation (5.9),

W(E) = W*(RERT),
so that in view of (5.12),(5.13)

W(E) = W*(RERT). (5.14)
If, finally, W is invariant under rotation of = /4, i.e., if

W(E)=W(RER"), E € M,,

(5.14) yields
W(E)=W*(E), FE € M,,

from which it is immediately concluded that

1
W(E) = 3 E.E. (5.15)
Thus in the terminology of Section 4.2, an interchangeable material of the form
(5.10) with microscopic and macroscopic /4 invariance behaves macroscopically
like a linear incompressible isotropic material with shear modulus 1/2.
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Remark 5.8 : The result above generalizes that of subsection 4.2 in the case of
non-quadratic growth.

Remark 5.9 : The result above can be turned into a theorem provided that the
formulae yielding the effective energies are justified in the present context. Note
that the energy density w(x,e) satisfies the non-standard growth and coercivity

condition,
/ 1 1
alel <uw(ze) <P+l -+ =1,

for some 0 < a < 8 < +oo, provided that, for some 0 < o’ < ' < +00,
o lef’ < z(e) < B'(1+]ef’),

and also that p < 2.
In such a case the elastic energy W (E) may be proved to be the energy density

associated to the I'(LP)-limit of / w(z/e, e(u)) de whenever 5 < p < 2 (cf. Braides
and DeFranceschi 3] ch. 21).
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