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Abstract: The exact description of the overall behavior of composites with nonlinear
dissipative phases requires an infinity of internal variables. Approximate models involv-
ing only a finite number of those can be obtained by considering a decomposition of the
microscopic anelastic strain field on a finite set of shape functions. The Transformation
Field Analysis of [Dvorak, 1992] is obtained as a special case of the proposed theory by
considering shape functions which are uniform within a given subdomain. The interest of
considering nonuniform shape functions is shown.
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1. INTRODUCTION

Among all Paul Germain’s scientific achievements, his contribution to the formulation
of constitutive relations in the coherent framework of Continuum Thermodynamics has
a prominent place. His book on “Mécanique des Milieux Continus” [Germain, 1973],
contemporary with the seminal work of [Halphen et al, 1975] on “Generalized Standard
Materials” (GSM), opened a way which was further pursued, developed and illustrated by
many authors inside and outside France (see [Germain et al, 1983, Lemaitre et al, 1988,
Lubliner, 1990, Maugin, 1992] for a review).

This theory relies on two fundamental concepts, the notion of internal variables, of-
ten denoted v, and the notion of thermodynamic potentials, the free energy pw and the
dissipation potential ¢, endowed with specific mathematical properties.

The internal variables o at time ¢ are supposed to contain all the relevant informa-
tion about the material history for times 7 < ¢. The choice of these variables depends
obviously on the constitutive relations under consideration. Some of these variables have
a purely macroscopic interpretation. Other variables are sometimes interpreted as mi-
crostructural variables but most often the equations governing their evolution are not re-
ally derived from micromechanical considerations.



The aim of this paper is to give an example of an approximate micromechanical
scheme in which internal variables at the macroscopic level have a well understood mi-
cromechanical interpretation. More specifically, we consider a nonhomogeneous material
with elementary constituents which are standard is the simplest possible form. The only
internal variable is the anelastic strain. It is well known that the overall behavior of such
a composite has a GSM structure but with infinitely many internal variables which are the
fields of local internal variables. This result will be recalled in section 2 following the
presentation of [Suquet, 1985]. Similar ideas were already present in different forms in
the works of [Rice, 1970] and [Mandel, 1972] among others.

In practice it is necessary to reduce the number of internal variables by considering
that the local fields of anelastic strains depend only on a finite number of “shape func-
tions” describing the variations of the local plastic fields. This reduction is done in section
3. It is remarked that the proposed method reduces to the “Transformation Field Anal-
ysis” of [Dvorak et al, 1994], when the plastic strain fields are assumed to be uniform
within each individual phase. This corresponds to the case where the shape functions are
the characteristic functions of the phases. The proposed theory is more general in that
the shape functions are not required to be uniform within a given domain. The method is
illustrated in section 4 and its merits are assessed by comparison with the TFA.

2. STABILITY OF THE STANDARD STRUCTURE BY CHANGE OF SCALE

Consider a “representative volume element” (r.v.e) V" of a nonhomogeneous material com-
posed of NV different phases or subdomains. This r.v.e is subjected to an average loading
characterized by a given path in the space of overall strain or stress. Attention is limited
to isothermal evolutions and infinitesimal deformations. The overall Cauchy stress o and
the overall infinitesimal deformation £ are the averages of their local counterparts o and
€

o= (o), &=/(e), where(f)zl—‘lq/‘;f(m)dm. (1)

The local stress and strain fields are determined through the resolution of the “local”
evolution problem posed for the r.v.e. and consisting of equilibrium equations, boundary
conditions and constitutive relations. The boundary conditions are assumed to be such
that Hill’s micro-macro localization condition is satisfied: for any compatible strain field
€ and any stress field o in equilibrium, both meeting the boundary conditions imposed on
the boundary of the r.v.e., the following equality holds

(oc:e)=(o):{(e) =0T :E. (2)

Examples of boundary conditions meeting (2) include uniform strains, uniform stresses,
periodicity conditions (see [Suquet, 1987] for more details). Periodicity boundary condi-
tions will be assumed in the following.



2.1 Standard constitutive relations

The behavior of the individual constituent at point & is defined by a “standard” model,
i.e. by two thermodynamic potentials. The free energy pw defines (through the state
laws) the forces available in the system at rest to drive the dissipative mechanisms, and
the dissipation potential ¢ relates the rate of the dissipative mechanisms (complementary
laws) with the associated forces. For simplicity we shall consider that the only dissipative
mechanism comes through an anelastic strain (plastic or viscoplastic strain) 2" and that
the free energy is a quadratic function of the elastic strain

1
e=€e*+e™", pw(ee®) = 5(:—: —e™):L:(e—e™). (3)
Then the state laws and the complementary laws read respectively:

State laws: o(x) = pg—’:(w, g(z),e®(z)) = L(x) : (e(z) — e™"(z)), @)

Op
7= e

The potentials pw and ¢ may depend on & (nonhomogeneity of the volume element) and
are assumed to be convex with respect to their other arguments.

Complementary laws: (x, 2" (x)). )]

2.2 Generalized standard structure of the overall constitutive relations
The free energy is an additive quantity or, in other words, the overall free energy of the
r.v.e. V is the average of the local free energy. As shown in [Suquet, 1987], the state
variables at the macroscopic level consist of the average strain € and of an infinite number
of internal variables which are the values of the anelastic strain field at every microscopic
pointx € V:

a = {e*"(z)}zev- (6)
The overall free energy reads
pw (€, {e™ () }oev) = (pw(e,e™)), with p= (o). )
The forces associated with the state variables are
oW _ . ow _
Pae EA@ec), A= {Ackocy, Ae= by (B (e (@)}eer).
(®)

The first force can be computed using Hill’s lemma

P & (@ haer) = (5 (ee®) 2y = (35 ) =(0): (55) =,



since <%> = I. Similarly, the set of forces {.A;}zcv coincides with the local stress
field {o () }zecv. The effective dissipation potential reads

P({e™ (@) }zev) = (p(€™")). 9

With the choices (6) (7) (9), the effective constitutive relations of the composite have a
generalized standard structure:

State variables: &, a = {e*"(z)}zev, (10)
0w 0w ,_
State laws: o= Poe (g, a), A= —pa—a(e, a), an
o0p , .
Complementary laws: A= %(a). (12)

2.3 Green operator I'
At rest (no evolution of the system) the stress and strain field in the r.v.e. solve the fol-
lowing linear elastic problem, with appropriate boundary conditions

o(z) = L(z) : (e(x) — e*"(x)), div(e(x))=0, (e)=FE. (13)

The strain field e(x) solution of this problem is a nonlocal function of the anelastic strain
field and can be expressed as:

e(x) =A(z): g+ |V|/D z,x’): ¥ (z')da’ = A(x) : €+ D xe®(z), (14)

Dxe™(z) % . ! /wa (') d'. (15)

In this relation A(z) denotes the elastic strain-localization tensor, and the nonlocal op-
erator D(z,z’) = I'(x, «’) : L(x") gives the strain at point  created by an eigenstrain
£%(x') at point «’. I'(x, x’) denotes the nonlocal elastic Green operator which can be
expressed in terms of the derivatives of the Green function for the Navier equations with
elastic coefficients L. More specifically, given a field of eigenstress 7 (), the solution of
the elasticity problem:

o(x) = L(z) : e(x) + 7(x), div(e(x)) =0, (e) =0, (16)



can be expressed as:
e(x) = —(I'x 1) (x). 17)

I' has simple properties which will be useful in the sequel

/ I(z,z') de’ =0, / I'(z,z')de=0, I'(x,z')="T(z, ). (18)
v v

3. REDUCTION OF THE NUMBER OF INTERNAL VARIABLES

3.1 State variables
In order to reduce the number of internal variables, we assume throughout the following
that the field of anelastic strains can be expressed as a function of a finite number of
“shape functions” 0,:

A
e(z) =) e b (). (19)
a=1

The “reduced” state variables of the model are the overall strain and the component of the
anelastic strain field on the shape functions:

€ and a={e}41, 4 (20)

A typical example of such shape functions is provided by the characteristic functions
of phases or subdomains within the same phase (we shall consider the subdomains as
separate phases even though a single mechanical phase can be divided into several subdo-
mains):

xr(x) =1ifx €V, x.(x) =0 otherwise. 2D

This specific choice leads to the “Transformation Field Analysis” of [Dvorak, 1992] where
the plastic strain field is assumed to be uniform over each individual subdomain V,.. How-
ever it may be interesting in certain circumstances to consider shape functions which
are richer than the characteristic functions to account for spatial nonuniformity of the
(anelastic) strain field within one phase or subdomain. The resulting theory will be called
the “Nonuniform Transformation Field Analysis” (NTFA).

It is assumed that the shape functions have their support entirely contained in a single
phase. In more mathematical terms it is assumed that

Oo(z)xr(x) =00rby(z) Vr=1,..,N. (22)

Therefore one can define L, and ¢, as the stiffness tensor and the dissipation potential
of the phase r in which the shape function 8, has its support.



3.2 State laws

With the decomposition (19), the effective free-energy (7) and the thermodynamic forces

associated with the state variables (g, {€2"},-1,...4) read as

A A 3
—— 1
P (8, {€Yamt,..t) = §<<e DIANEAHCEDY e%"9ﬂ>>,
a=1 pA=1

7= P00 (& (e Y, < ZE*‘"H > (o

0w ,_
Ao = “Pagan (& {e5 Yazt,.0a) = (L : (e — €¥)0a) = (oba).

7/

The state laws can be more easily expressed in terms of the following generalized stresses

and strains
(o0a) (€a)  an _ (e%0a)
a, = , €q= , €4 = .
(0a) (0) (0a)
Note that
A
Ay = ay(0a), Z 9)as 5 (05)€y", where gog = (6ab3).
B=1

Multiplying the local state law (4) by 8, and averaging over V' yields
ao=L,:(e,—€"), a=1,.,A

Under the approximation (19), (14) becomes
A
e(z) = Z (D *65)(x) : €5
ﬂ:
Upon multiplication of equation (27) by 6, and averaging over V, one obtains
A
=A,: €+ ) Dos:€f,

where

(Af,) _ (0D * 6)

4e="gy D=,

(24)

(25)

(26)

27)

(28)

(29)



Similarly, incorporating (27) into (23b) yields

A
T=(L:A):8+ ) ((L:Dx6,) — La{fa)) : €. (30)

The state laws, expressing the forces & and A,, in terms of the state variables € and 3"
consist of (30), (26) with (28) and (25).

3.3 Complementary laws
Under the approximation (19), the dissipation potential (9) can be expressed in terms of
the rates of the internal variables {€2"},—1,. 4 :

A
F(6) = (p (&™), wheree™(z) =) &0,(x). (31)
a=1
Then
a[ﬁ -an _ a‘p ~an _ —
o (€2 oms,.) = ( ()8 ) = (00n) = A @

Therefore the constitutive relations of the composite (in reduced form) have a gener-
alized standard structure defined by the state variables (20), the free energy (23) and the
dissipation potential (31).

There is however a difficulty in applying the complementary law (32) in exact form.
This would require the knowledge of {(&€%")) which cannot be expressed simply in terms
of the £€3"’s. Another approximation has to be introduced. Note that thanks to the convex-
ity of ¢, one has:

(Bapale™) (E8,)
) Z“"“( ) ) 3)

The right-hand-side of (33) can be considered as an approximation of its left-hand-side.
Then

0 = (oo = (0,525 (55 ) - o 955 (55).

Therefore the complementary equations (32) can be expressed (in approximate form) as:

0ps .
Gq = =5 (&), (34)



3.4 Link with the Transformation Field Analysis
The link with the Transformation Field Analysis of [Dvorak, 1992] can be made by choos-
ing the shape functions to coincide with the characteristic functions (21) of the phases or
subdomains:

Ou(x) = xr(z), (o) =cCr, (Oubp) =c¢rbrs, T,5=1,..,N,

where c, is the volume fraction of phase r and 4, is the Kronecker symbol. The anelastic
strain is assumed to be uniform within each subdomain V;. The generalized stress and
strains a,, and e, reduce to the average stress and strain over the subdomain V.

The state laws (26) and the complementary laws (34) read:

N
%,
o= Zcra',, o,=L,:(e,—€"), o,= a;rn (", r=1,..,.N, (35

where the average strains €, in the different subdomains are given by:
e—i—ZDm. . r=1,.. N. (36)

The fourth-order tensors A, and D, are the average strain localization tensors A, and
the influence tensors D, which are the basic ingredients of the TFA ([Dvorak, 1992}):

11
,=—— [ A(z)x (x)de,
o V1, A )
and
D, = //X,. ) : L(z")xs (') da'de.
o |V| vl

A few well known algebraic properties of these tensors are useful in their computations

N N
ZDST =1I-— As; ZDSTL;I = 07 csL; Dy, = c'rTl)'rsl;r-

4. EXAMPLES

The relative merits of the above models are assessed by means of the following two-
dimensional example. The r.v.e. consists of a square unit cell containing a square inclu-
sion (phase 1) located at its center (with volume fraction c¢; = 0.25). The unit cell is sub-
jected to periodic boundary conditions. The inclusion is linear elastic. The surrounding
matrix is elastic perfectly plastic (von Mises criterion with yield stress oy = 100 MPa).
The inclusion and the matrix have the same elastic moduli £ = 100 GPa, v = 0.25.
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Figure 1: Unit cell. Subdivisions used for the implementation of the TFA. (a): 2 subdo-
mains, matrix and inclusion. (b): 8 subdomains in the matrix. (c): 48 subdomains in the
matrix, 4 subdomains in the inclusion.

(2) (b) (©)

Figure 2: (a) Mesh used in the FEM calculations. (b) Shape function 1 (flow mode in
simple shear). (c) Shape function 2 (flow mode in uniaxial tension).
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Figure 3: Effective stress strain curves. (a) Pure shear. (b) Uniaxial tension. The number
in parentheses denotes the number of subdomains or shape functions used in the imple-
mentation of the TFA or NTFA.

The unit cell is subjected to an in-plane overall stress
T =0116; Qe +0xne; ® ey + 2012, Q; €. 37

Attention has been paid to two specific cases, simple shear (o1; = 722 = 0) and uniaxial
tension (12 = T2 = 0). The exact responses (up to numerical errors) of the unit cell
under the simple shear and uniaxial tension has been computed by the FEM. The TFA
and the NTFA have also been implemented.

Several subdivisions of the unit cell have been considered in the implementation of the
TFA. The cruder subdivision considers the plastic strain to be uniform in the matrix (Fig-
ure la). Finer subdivisions were also investigated in which the matrix was divided into
8 and 48 subdomains respectively, as shown in Figure 1b and 1c. The elastic properties
of the inclusion and of the matrix being identical, the elastic strain localization is trivial
A(zx) = I. The influence matrices D, are computed numerically by the Finite Element
Method using a regular mesh of 80 x 80 quadrilateral 8 nodes elements shown in Figure
2a. A uniform eigenstrain 2" is prescribed to the subdomain V; and the average strain in
subdomain V, caused by this perturbation is computed. The corresponding relation yields
the influence tensor D,.,.

Only three shape functions were used in the NTFA (more shape functions could have
been used but it is worth noting that satisfactory results can be obtained with relatively few



shape functions). The first shape function 6, is the characteristic function of the inclusion.
The second shape function 8, is the flow mode in pure shear. The third shape function 65
is the flow mode under uniaxial tension. These modes and the corresponding influence
matrices D, were computed numerically by the FEM using the mesh shown in Figure
2a. Snapshots are shown in Figure 2b (pure shear) and 2c¢ (uniaxial tension). Whiter
zones denote higher strains. Remarkably enough, the pattern flow mode under pure shear
shows zones with uniform strains. An exact solution for this problem can be constructed

in closed form. The strain field, solution of the elasto-plastic evolution problem, is a pure
0o

2v/3u

gl2_Ee+5“'inB € _ fuze +e®inC (38)
where A denotes the inclusion, B denotes the subdomains located at the top right, top
left, bottom right, bottom left in Figure 1b, and C denotes the remaining subdomains in
Figure 1b.

slip solution which can be expressed in terms of £°® = as

612=Ee inA, €12 =

The responses of the unit cell to the imposed loadings as predicted by the TFA and
NTFA models are shown in Figure 3. The predictions of the TFA with the cruder dis-
cretization i.e. with one subdomain for the inclusion and one subdomain for the matrix
are unrealistically stiff (this is well known [Suquet, 1997], [Chaboche et al, 1999]). When
the discretization is refined (the number of subdomains is increased), the predictions of
the TFA become more realistic. In simple shear, the exact solution is recovered by the dis-
cretization with 8 subdomains as follows straightforwardly from the exact solution (38).
But in general the convergence towards the exact solution can be slow as the number of
subdomains is increased. This is shown in Figure 3b where it is seen that, even with 48
subdomains in the matrix, the prediction of the TFA is not very accurate. The prediction
of the NTFA with only 3 modes is as accurate as the prediction of the TFA with many
more subdomains. This is due to the fact that the solution is nonuniform and that this
nonuniformity is built-in into the shape functions.

In conclusion, we have shown that the reduction of the number of internal variables
achieved by the TFA can be improved. We have considered a decomposition of the mi-
croscopic anelastic field on shape functions which are nonuniform and which capture the
expected nonuniformity of the exact fields.
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