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Abstract

If Z is the branching mechanism for a supercritical Glaton—-Watson tree with

a single progenitor and E[Zlog Z] < oo, there is a branching measure p defined

on OT the set of all path £ which has a unique node £|n at each generation n. We

use the natural metric p(§,7) = e™™ where n = max{k : £|k = n|k} and observe
that the local dimension index

B(£In))

.1
d(p.€) = lim L"(_n__

=a=logm, u-—ae €.

Our objective is to consider the exceptional points where the above display may
fail. There is a non—trivial “thin” spectrum for d(u,£) when p; = P{Z =1} > 0
and Z has finite moments of all positive orders. Because d(u,§) = o for all £, we
obtain a “thick” spectrum by introducing the “right” power of a logarithm. In
both cases we find the Hausdorff dimension of the exceptional sets.
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1 Introduction

We are interested in supercritical Galton-Watson trees with a single progenitor. Let
Z = {po,p1, -~} be the offspring distribution of a Galton-Watson branching process,
defined on a probability space ({2, P), with mean m = Y jp; > 1 and I = I'(w) denote
the associated family tree. Let u be the branching measure on the boundary 0T see
Section 2 for more detailed descriptions. We remark that u is a random measure on the
(random) tree I' and our object in this paper is to find properties of the multifractal

spectra of x which are true with probability one. Put
a =logm > 0.
It is already known that, with probability one,

d(y,€) = lim log uB(¢ln) _

=00 n

—-a p—ae €0l

which can be translated, using the natural metric in 0T, to

d(u,€) = hmlo_gw =a, p—ae £
=0 logr

The above display is the usual starting point for multifractal analysis of a locally finite
Borel measure.

In a recent paper Liu[L3] showed that, if p = py = 0 and Z has finite moments of
all orders then, with probability one,

d(#)é) = a’ vg'

Thus the ordinary multifractal spectrum is trivial in this case. However, even in this case,
as was shown for the occupation measure of stable subordinator in Shieh-Taylor[ST] and
of Brownian motion in Dembo-Peres—Rosen-Zeitouni[DPRZ], one can observe a non—
trivial spectrum for “thick” points, by introducing an appropriate power of a logarithm.
Results of this type are obtained in Section 4.

In [L3], Liu also observed that, if Z has finite moments of all positive orders, then

d(p, £) = liminf
n—oQ n

which implies that for 8 # a the set




Eg={(€dl: d(u,&) =P} is empty,

so that the standard multifractal formalism cannot yield a spectrum. However, as in
Perkins-Taylor[PT] for super-Brownian motion and Hu-Taylor[HT] for stable occupa-

tion measure, we prove that, when 0 < p; < 1, there is a non-trivial spectrum for

d(u,€) = limsup —10g+3(£]n)‘

In Section 5, we obtain the Hausdorff dimension of

for an interval of values of 8 in which these sets are non—empty. In both Sections 4 and
9, our method also yields the packing dimension of the relevant sets.

In this paper we again make use of the strong spherical porosity conditions first de-
fined in [PT]. Section 2 defines this condition and its meaning on dT; in addition we recall
the necessary preliminary definitions and results for Galton-Watson trees. In Dembo-
Peres-Rosen-Zeitouni[DPRZ], and Khoshnevisan—Peres-Xiao[KPX], it is pointed out
that many exceptional sets examined in random phenomena are of limsup type; they
provide a useful theorem giving a lower bound for the Hausdorff dimension of such sets
The exceptional sets which we examine now on 8T are again of limsup type. We there-
fore develop a version of the main theorem in [DPRZ], proved there for Euclidean cubes,
which is valid in the context of a Galton-Watson tree. This is done in Section 3, and is

used in both Sections 4 and 5.

2 Preliminaries

We begin with notation and results for Galton-Watson trees which we need in this
paper; these are adapted from Pemantle-Peres(PP]. Let Z = {po, p1, - - -} be the offspring
distribution of a Galton—-Watson branching process. We assume that m := >;Jpj < 00
and that pp = 0,p1 < 1; thus 1 < m < oo, that is we are in the supercritical case(As
pointed out in [PP], if po > 0 and m > 1 there is positive probability that T is finite. All
our results remain true, condtioned on the event that I" is infinite. However we impose

po = 0 to eliminate the complication of conditioning). We also assume that Z is not
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a constant, that is p; < 1, Vj. Associated with each realization of the process, we
have a (random) family tree, called a Galton-Watson tree(GWT), which we denote by
['=TI(w). Let T'y,n =0,1,2,--- be the n-th level(generation) so that I' = U,[',. Let
Zy, denote the cardinal number of I';, and we assume that Zg = {0}(single progenitor).
Assume moreover that £[Z log Z] < oo, then the limit

W := lim Zn

n—o0 m'.'l,

exists and is finite and positive a.s., see Artheya—Ney[AN]. For a GWT I there is as-
sociated a natural boundary OT, which is defined as the set of infinite self-avoiding
paths from { through the tree; we denote by ¢ a generic point in 8. For o € Ty,
lo| = n denotes its length and B(c) = B(o,r), r = e™", denotes the “ball” {¢ € oI :
o is the ancestor of ¢ in I',}. We also use £|n to denote the ancestor in T, of an
¢ € 0. We remark that 0T is a compact metric space under the metric d(&,&;) = e™™,
where n = max{k : {&1]k = &|k}. In this metric, the subtree consisting of the vertex
o € I, and all its descendants is a ball in 0T of diameter of e, as denoted above. Let
W (o) be the shifted W at the vertex o, that is
W(o) = lim card{n € I'; : ¢ is the ancester of 77}‘

n—0o mn-lel

Since I' is a countable set, W (o) exists for all ¢ € T' with probability one. By assuming
the existence of W (o), we define branching measure on 8TI" as the unique (random) Borel

measure g on OI' such that
uB(oc)=m™"W,, oe€Tl,.

Note that W (o), o € I'y, are iid with the same distribution as W, conditional on Z;,] <
n. Thus, the above display reflects the statistical self-similarity of the measure u.
In Perkins-Taylor[PT], the notion of a v — thin set for v+ > 1 was defined. The

definition was for R? but it translates to any metric space, so we define it for oT.

Definition 2.1 Fizy > 1. We say E C 0T 1s y — thin at € if there is a sequence r; | 0

such that
EN[B(¢,r)\B(¢, )] =0 Vi,

We say & is a v —thin set if E 1s v — thin at each £ € E.
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The nature of our metric on 8T then asserts that OI' is v — thin at & if and only if
B(£lni) = B(¢|[yni])

for an increasing sequence of positive integers n;([]: the greatest integer part). This is
equivelent to saying that {|n € I'y has exactly one descendant in [y for n; < n <
[yn:], 1 =1,2,..., This shows that ' can have y—thin points only if p > 0, and in
this case we denote the set of all y—thin points for 4T by S,.

We now recall some facts first proved in [PT] for Euclidean space. It is easy to check

that the results remain true for OT.
Lemma 2.1 For any v — thin set E C 8T, we have
DimFE > vdimFE.

Here. Dim stands for packing dimension and dim stands for Hausdorff dimension. One

can refer to [PP] for the detailed definitions and properties of Dim and dim on GWT’s.

Lemma 2.2 Let v be any Borel measure on OT and its support be S = S(v). IFAC S
is ¥ — thin, and
d(v,z) > a Vze€ A,

then,

d(v,z) > va Vz € A.

We note that, in the case of branching measure y, with probability one, every ball B(o)
has positive 4 measure. Hence S(u) = OI'. We will see that there is a range of values of
7 for which S, # 0, provided some simple conditions are satisfied.

We mention that the metric space 8T has fractal dimension a: with probability one,

dimdl' = Dimdl' = «a.

3 Limsup fractals on Galton—Watson Trees

The following two propositions are a version of Theorem 2.1 of [DPRZ] for GWT. Firstly

we note that 0I' can be regarded as a random subset of the infinite sequence space IN*.




{
We define a random mapping ¥ on N® x Q so that ¥(B,w) = 0, whenver B ¢ Ol (w),
and that Z(B,w) is {0, 1}~ valued, when B C OI'(w). Set

A = limsup A(a),

where
A(n) = Ug(B(o))=1, oer.B(0).

Proposition 3.1 Assume that
(i) the random variables ¥(B(c)), o € I'n, are independent;

(ii)the ezpectation
gn = E[U(B(0))] = P{¥(B(r)) = 1}
is the same for all 0 € T, and
(i11) there is a sequence of poitive integers ny which increase to oo rapidly enough so

that m*™ < ngyy, Vk, such that q, satisfies the following lower bound estimate,
em ™ < qn, VK,

where ¢ is some absolute constant and 0 < § < 1. Then, with probability one, the limsup
set A defined above has infinite Hausdorff ¢—measure, ¢ —m(A) = +oo, where the gauge
function ¢ is defined by

¢(z) = 2170 (log(1/2))%, O<z <1, b>2.
In particular, dimA > (1 — §)a.
Proposition 3.2 Under the conditions of Proposition 3.1, with probability one,
DimA = a.

Propositions 3.1 and 3.2 can be proved using the methods of [DPRZ]. We remark that
we do not need a condition which bounds the correlation since the sub-trees B (0),0 €Ty,
are completely independent. We need modifications because we are now working on a
random tree, rather than the binary tree; these can be made by suitable use of conditional
independence. Moreover, the third condition in Proposition 3.1 is stated as required for
all large n in [DPRZ], yet in fact it is only needed for a sufficiently rapidly increasing
sequence. We will leave the details to readers. We also mention that Theorem 2.1 of

[DPRZ] has been further refined in [KPX].




4  Dimension Spectrum for thick behavior

From Section 1, we know that the "typical behavior” of the branching measure p on
B(o),0 € T'n, is m™", for all n large enough. To describe the behavior of u which is

"thicker”, we introduce the following two (random) sets

Ag = {5 € 0l : limsup H(L(ﬂn—)) > 9},

m—nn/\

and

By := {E € or: limnsup W/\—D = 9}.

m-"n

In the above, A is defined by
a

B log||Z]|oo’
where || - ||oo 1s the sup norm of the underlying probability space. Note that 0 < A < 1,

and A < 1 if and only if Z is a finite distribution. To describe the dimension spectrum

Ai=1

of Ag and By, we need the following two parameters

.. ,—log P[W > z]
To = llﬂglf 21/ )
r := the one such that P[W > z] = e as 11 o0,

here a = b means that there are ¢;, ¢; such that c;a < b < cya. To discuss the dimension
spectrum of Ay, we assume that rp is finite and positive, which is a quite mild assumption
as we can see from Lemma 4.1 below. To discuss the dimension spectrum of By, we need
to impose the stronger assumption that r exists, and is finite and positive. This is a
strong condition, yet it holds for the interesting case that Z has a geometric distribution,
which makes W have an exponential distribution and then A = r = 1. It holds also for
the case in which W has a gamma distribution, see Harris[H, p17]. Now we state our

dimension spectrum separately for Ay and By.
Theorem 4.1 Assume that ro 1s finite and positive, then, with probability one,

dimAs = a — o™, 0<6< (2)
To

Theorem 4.2 Assume that r exzists, and is finite and positive, then, with probability

one,



. A
dimBy = & — o, 0<0< (2"
T

Moreover, under the assumption of Theorem /.1, resp. Theorem 4.2,

Dimds = @, 0<8< (),
0
resp. DimBy = a, 0<f< (2:—)/\.

Remark 1. Since By C Ay and r is necessarily equal to vy under the existence
assumption, Theorem 4.2 has a stronger assertion under stronger assumption, compared

with Theorem 4.1.
Remark 2. By the following uniform law for y proved in Liu-Shieh[LS],

B A
lim sup sup w = (ﬁ) ,
n  geal mT'n To
A
the set Bg = () for § > (T—‘;-) . Thus, the range for § in Theorems 4.1 and 4.2 is exact.
Firstly we state a lemma giving conditions which imply that ro is finite and positive.
The lemma is a direct consequence of Liu[L1l Theorem 3.1 and L2], however it can be

deduced from earlier results.

Lemma 4.1 The parameter ry is finite and positive, when A\ < 1, or when A = 1 and

E[e?] < oo for some, but not for all, t > 0.

Proofs of Theorems. We concentrate first on the Hausdorff dimension, dim. We begin
with the discussion of the extreme cases § = 0 and § = (T—"(‘)—)/\ For 8§ = 0, the asserton
dimA, = dimBy = « is merely a consequence of the well-known result that dimy =
logm a.s.; see Hawkes[H] and Lyons-Pemantle-Peres[LPP]. For § = (%)’\, it is a
consequence of letting a sequence f; strictly increase to ¢ and proving the spectrum for
Ox. Therefore, henceafter we assume that 6 is not at the endpoints of the range in the
theorems.

To prove the upper bound of dim it suffices to show that, for any b > o — o6/, the
Hausdorff b—dimensional measure, b — m, of Ay is zero. This proof is standard and was
given in [LS, Section 3]; we include the proof here for completeness. We observe that,

for € : 0 < € < @ and positive integer k,

hoc el cor HBERD 60y




where C' = (%)/\ We consider the pre-Hausdorff b—dimensional measure at level &,
(b — m)k(Ag) = 1nf{z |B(o)": ACUB(0), |o| 2k, Vo}.
Recall that |B(c)| = e™* when o € T'y. Let I; denote the random variable defined by

L=Y |B, [1{“ _n' n) > (0-¢)C},
lo]=n n?

then, using the definition of ry we see that

EL < 3 e om0 Actn,
n>k
when k = k(e) is large enough. The series in the above display is convergent, so that I,
tends to 0 a.s. as k T co. Since € is arbitrary, we conclude that b — m(A,) = 0.

To obtain the lower bound of dim, let r; be such that ro < 7, and 8 < (%)/\ We
prove that dimAy > a — r;8'/* by proving that Ay has infinite Hausdorff ¢—measure,
where

é(z) = 22" (log(1/2))’, O<z <1, b>2.

We apply Proposition 3.1 in the following way. Define the random mapping ¥(B,w),
B CN®andw € , tobe 1, only when B = B(0),0 € 0'y(w) and when W (o,w) > n*d
otherwise U takes value 0. Thus g, = E[¥(B(0))] = P[W > n*6]. By our definition
of 7o as a liminf and our choice of r; there exists a sequence ny T oo such that g, >
e"”"(’”'\, Vn = ng. We may well assume that nj satisfies the rapid growth condition
in Proposition 3.1. Therefore Theorem 4.1 is an application of Proposition 3.1 with
§ = a~'ri6*/* there, and that r; can be arbitrarily close to ry. To prove the lower bound
for By, we need to use a strategy first used in [PT|. Under the stronger assumption on

the existence of r, let now
é(z) = x“"gllx(log(l/z))b, O<z<l, b>2.

Then the above arguments assert that Hausdorff ¢—measure of Ay is infinite while, by
the upper bound proof given in the above, that of Agy1/. is 0 for all £ =1,2,---. Thus,
By = Ag \ UrAgy1/k 1s also of infinite Hausdorff ¢—measure; in particular we get the

desired lower bound for Bj,.




Application of Proposition 3.2 gives the assertion for Dim. O

Remark. We believe that the stronger assumption in Theorem 4.2 for By is not
needed; a proof would require a version of the limsup theorem based on Corollary 3.3
of [KPX], in which the target set satidfies a regularity condition so that we can use
the value of g, in Proposition 3.1 on a subsequence. We have not formulated a precise

theorem, so in this paper we use the methods of [DPRZ].

5 Multifractal spectrum for thin behavior

The reader is reminded that smaller than usual branching behavior is reflected in large
values of d(u,¢) defined in Section 1. As we have seen in Section 1 that d(p,€), and
hence so is d(u.£), is equal to o for all ¢ whenever py = p; = 0; thus there is only
a trivial mulftifractal spectrum in this case. In this section, we prove that, whenever
0 < p; there is an interesting spectrum for d(u,£)(we always assume that po = 0 and

that p; <1, Vj). We need the following lemma which is in Liu[L3].

Lemma 5.1 ([L3, Theorem 4.1(ii)) If Z has finite moments of all positive orders, then,
with probability one,

d(p,€) = a, VEe .
We introduce a new paremeter needed in this section, assuming that p > 0.

_logpy
—

Note that

pr=e"%
The following small tail distribution of W™ is known from Bingham(B, p. 217].
(5.1) PW <z]a~z", z|O0.

We first observe that the probability of a long string of vertices giving rise to a single
branch leads to the same estimate for P[W < z]. For,if k > n and o € [, then the

event £ that there is only one € I’y descended from o is

(5.2) P(E) =p/™".
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Now conditional on E, W, = m* "W, . so that

PW, < m~¢=")|E] = P[W, < 1].

Thus, we have

Lemma 5.2 Under the above conditions, if z = m~%"" and E is the event that each
vertez starting with o € I, has only one descendant up ton € Ty, then
<
1> P{W, <z}nE] S

We now see how to obtain an efficient cover for points in the thin spectrum.

C3.

Lemma 5.3 Suppose v > 1,0 < e < (y —1)/3. Then, with probability one, there is an
ng = no(w) such that every vertez ¢ € I'y, with n > ng such that W, < e~(r=Den pasq

fewer than e*®™ descendants at the level k = [(y — €)n].
Proof. For each n € T descended from o € T',, such that W, < e~(v=1D¢? it is seen that
Wn S e—ECt’n..

By (5.1), the above has probability < cye™**™™. Putting N, as the number of descendants

of o at level k, we have then

fan

P[Na' > Ccaana- < 6_(7_1)0‘"] < [Cze—-sc-:-rn]e

in which we have used the fact that W, for distinct n € [’y are iid. Recall that Z,

counts the vertices o € T',, thus the expected number of ¢ such that W, < e~(v-llen

and N, > e®" is
S E[Zn] . Cze—ea‘rn-em".

Since E[Z,] = e*™ we deduce that the probability that there is at least one such vertex
is bounded by cpe*™(!=<7¢“")which is the general term of a convergent series. By the

Borel-Cantelli Lemma we have proved the lemma. O
Lemma 5.4 If 0 < p; < 1, then, with probability one,
(5.3) dimCj < a[%(l +7)—7], a<g,

where Cg = {£ € 0T : d(u,€) > B}.
When 8 > a(1 +1/7), the right hand side of (5.3) is negative, and we interpret this as

stating that Cg = 0.
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Proof. (i) When 3 = «, (5.3) is immediate.

(ii) When 8 > (1 4 1/7), we will prove that C5 = 0 a.s. Take ¢ such that 8 > ¢ >
a(l +1/7), then d(u,¢) > B implies that pB(€|n) < e~¢* for infinitely many integers n.
The expected number of those o € ', for which W, < e(®=9 is

E[Z,] - PIW < ¢lo=9)] = lxtla=Omn,

whcih is a negative power of e". By Borel-Cantelli Lemma, we deduce that, for n >

ny = nl(w)

uB(Eln) > 6, Ve,

By letting 8 | o(1+1/7) through a countable set, we deduce that, with probability one,
d(u,6) < al +1/7), WE € ol

(i11) Now suppose that & < 8 < (1 + 1/7). Put v = g > 1. Instead of covering the
vertices o € I', where uB(£|n) < e™P" by balls of diameter e™™ we use the descendant
vertices at level £ = [(y — ¢)n] which can be covered by balls of diameters e™*. By
Lemma 5.3, when n 1s large enough the number of such vertices is less than e so that
the total number needed will be at most e®*™-T,, where T}, is the number of those o € T,

for which W, < e=(6=2)", Now E[T,] = m™ - e~(6=2)™ 55 that we obtain
E[Sé' —'m(Og)] < i e-[('y—e)n]5+ean-—(ﬁ—a)1'n+an,
n=ni

where n; is arbitrary. If the power of of e® in this series is negative, we deduce that

s5 —~m(Cp) = 0 a.s. This will be true if

1 — (v -
te-(y=Ur
Y — €

6> 6 1=

Letting € | 0 through a countable set, we see that s° —m(Cp) = 0 a.s. for § > MA’T_]ME
Substituing v = §/a we prove the assertion. 0O.

We are now ready to prove that (5.3) gives the right answer for dimCy. However, if
we are to obtain the same answer for dimDyg, as in Section 4, we need to find a gauge
function ¢(s) = s*L(s) with L(s) slowly varying, such that ¢ — m(Cs) = co. We will
prove this by applying Proposition 3.1, and the strategy is the same as that used in [PT]:

we find a random Cantor-like subset T, which is y—thin and use Proposition 3.1 to find
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its Hausdorff ¢— measure. This set 7%, C Cs by Lemma 2.2 and Lemma 5.1. In order to
apply Proposition 3.1, fix a v > 1, we define the random mapping ¥ there by defining
¥(B,w) =1 if and only if B = B(0), o € [',(w) is such that its ancestor in [,/ (w)
has a string of single branches stretching to o. Denote the limsup set A there now by

T,. By (5.2), the probability ¢, in Proposition 3.1 is now

gn > c,pgl-l/v)n Cee(I=1/7)n | pan(1=1/7)(r+1)

We remark that the third factor in the middle term of the above display comes from the
expected number of all the possible ancestors in I',/,-1, given an element in [,. We
can now calculate the ¢ in Proposition 3.1. Note that T, is clearly a y—thin subset of

OI' by the construction. Thus we have

Lemma 5.5 Assume that 0 < p; < 1 and Z has finite moments of all positive orders;
let 3 be fized, a < B < (1+1/7)a, and define v = B/a. Then the Hausdorff measure of
the v—thin set T, defined above satisfies ¢ — m(T,) = +oo,

where the gauge function ¢ is ¢(z) = z®(log(1/z))3, with

A= a[%(l +7)— 7]

We can now state our main decomposition.

Theorem 5.1 If0 < p; < 1 and Z has finite moments of all positive orders, then the

branching meassure p has the following propoerties, with probability one. Set
Cﬁ = {6 : E(lu”é) > ﬁ}vDﬁ = {é : E(/.t,f) = 6}:

then
(a) Cpg and therefore Dy is empty for 3 > a(1 + 1).

(b) Dg is non-empty for a < B < a(l+ L), and in this range
o

dimCp = dimDg = a[ﬂ

DimCg = DimDg = a.

(1+7)~1]
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Proof. By Lemmas 2.2 and 5.1, T, C Cjp, where v = 8/a. By Lemma 5.5, the Hausdorff
¢a— measure of Cp is +00, where @, is the gauge function there in Lemma 5.5. Regard
A as a function of 3, it is strictly monotone. Lemma 5.4 then tells that ¢, measure
of Cgty/x is 0. Thus, arguing as in the proofs of Theorems 4.1 and 4.2, we see that
dimDg > A. Since Dg C Cp, we have completed the proof for « < 8 < (1 + 1/7). In
the case where 8 = a(1 4+ 1/7) we only need to show that Ds = Cj is non-empty. This
will follow if we can construct T, for v = 1+1/7 by requiring the string of single branches
to stretch from the level [n/y—log n]—1 to n. This condition forces d(u, &) > a(1+1/7),
on using Lemmas 2.2 and 5.1. O

Remark. In Theorem 5.1 we assume that Z has finite moments of all positive orders
is mainly to apply Lemma 5.1. It seems possible that we may weaken the condition in
Theorem 5.1 to, say, that Z has finite moments up to a certain order ko greater than one

and get a spectrum involving p, = sup{a > 1: EZ* < co}(one critical value in [L3]).
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