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1 Introduction

This preprint is an overview of our attempt to construct higher order terms in the

asymptotic expansion for the solution of the following nonlinear problem:

div j (z/e, Vu'(x)) = — f(x), (1.1)

where the nonlinear function j(¢, e) is periodic in £ and & > 0 is a small parameter.

The problem of finding the asymptotic behaviour of the solutions to rapidly os-

cillating equations has been considered in numerous mathematical works during the

last two decades.
The case when the function j(£, e) is linear with respect to e has been studied

comprehensively by many authors. The asymptotic expansions for linear homogen-
isation problems with periodic coefficients can be found in Bensoussan et al (1978),
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Sanchez-Palencia (1980), Bakhvalov & Panasenko (1984). Also, there have been
works treating nonlinear problems, e.g. Suquet (1982) derives the homogenised equa-
tion and studies the principal term of the asymptotics of the solution in the nonlinear
case.

Recently, there has been growing interest to the effect of the higher order terms
of such asymptotic expansions. The higher order effects have appeared to play an
important role in a number of applications (e.g. scale effects, strain gradient effects,
etc). Thus, the problem of finding full asymptotic expansions of solutions to rapidly
oscillating problems arises.

Bakhvalov & Panasenko (1984) constructed the full asymptotic expansions for the
linear problems. In the paper by Smyshlyaev & Cherednichenko (2000) we studied in
detail the structure of higher order terms and implications for construction of higher
order homogenised equations in this case.

Bakhvalov & Panasenko (1984) have also discussed briefly possible extensions
of their approach to the nonlinear case and the structure of the associated formal
asymptotic expansion. But the problem of accurate construction, finding precise
structure and rigorous justification of the full asymptotic expansion for solutions of
nonlinear equations has not been addressed.

This preprint is intended to have a role of the draft of our recent achievements in
this direction.

We show that the solution u®(x) to the problem (1.1) has asymptotics (3.10),
(3.11) and the “infinite order” homogenised equation has the form (3.21). In par-
ticular, the higher order terms in ¢ of the nonlinear homogenised equation (3.21)
involve higher derivatives (“strain gradients”) of the homogenised solution v(z). This
asymptotics is further rigorously justified when the nonlinear function j (&, e) satisfies
certain technical conditions (Section 4). We also discuss some further developments
and prospects (Section 5).

We use the notation V., Vg, ..., dive, div, ... efc for corresponding differential op-
erators with respect to the appropriate variables. The powers (V,)', (V,)!, ... denote
corresponding tensors of I-th order derivatives. Also in the formulas, when indices
repeat summation is implied, every time being carried out over the whole range of
the index. Throughout the text, symbols ‘-’ and ‘®’ denote dot product and tensor
product respectively, and angle brackets ‘( )’ stand for the average with respect to
the variable .



2 Formulation of the problem

Consider the following equation
div 7 (z/e, Vui(x)) = - f(z), €>0. (2.2)

Here € RY, 7 = j(£, e) is some nonlinear vector function, periodic in ¢ € R¢
with the periodicity cell @ = [0,1]¢ (d = 2 or d = 3 in physical applications). For
example, this function can be conductivity current density or elastic stress tensor.
(In the latter case j is a d x d matrix.) We will consider the case when the unknown
function u®(x) is scalar and the function 7 (¢, €) takes values in R%. Then the function
f(z) is scalar. We also assume that it is periodic with a fixed period T = [0, T')¢ where
T is a multiple of ¢, i.e. T//e € N, and the function f(zx) has zero mean over T.

In this study, we restrict ourselves to the case when there exists a potential W =
W (¢, e) such that j(&,e) = V.W (£, e). We assume that the function W = W(§, e)
is infinitely smooth, satisfies a growth condition as follows

—A; + BilefP < W (€, e) < Ay + Byleff for any €, e € R? (2.3)

with some positive constants Ay, Az, B1, Bz and p > 1. Function W(¢, e) is required
to be convex in e. Moreover, we will usually require that the following inequality
holds with some constant v > 0

B’W(¢, e)

i S VT 2.4
De:de; N = VIR (2.4)

for any &, e = (ey,...,e4),n = (", ..., n4) € R%
Having fixed A;, As, By, By, p, v and T—periodic function f € C*(R%) ¢ L7 (T),
1/p+1/p' = 1, with zero mean over T we consider the following variational problem

min /P(W(w/s,Vu(:v)) - f(a:)u(w))dw, (2.5)

1,
uEWU’;'er (T)

where Wol,f,’er(T) is the space of all T-periodic functions from the Sobolev space
W,oP(R?) having zero mean over T, with the norm being lullwre @y = IVullze(m).

The functional F,[u] = [r(W(x/e, Vu(z)) — f(z)u(z))de is weakly lower semi-
continuous and coercive on Wol, rer(T). Thus, the problem (2.5) has at least one solu-
tion in Wol,fe,(T). Equation (2.2) is the Euler-Lagrange equation for the problem
(2.5).



Normally, one also needs to impose some restriction on the function W = W (¢, e)
to make sure that the solution is unique and depends continuously on the right-hand
side —f(x) of the equation (2.2). This is important for the subsequent asymptotic
analysis. A typical restriction for this purpose is the requirement of strong monoton-
icity of the function j(£,e) = V.W (¢, e) with respect to e :

(VEW(ﬁ, 61) - veW(&) 62)) ! (el - 62) Z a|el - e2|p) o> 07 (26)
where p is the same as in (2.3), for every &€ € T and all e, e; € R9. It is well-known
that if (2.6) and (2.3) hold then the solution to the problem (2.5) (equivalently, to
the problem (2.2)) is unique and continuously depends on f € L? (T). We re-derive
this below for the reader’s convenience.

Note that a solution u*(x) to the problem (2.5) is a stationary point of the func-
tional F[u], i.e. the following identity holds

[r VW (2/e,0)] gy - VH(@)dT = /T f(x)p(x)de 2.7)

for any function ¢ € W[,l,ﬁ’e‘,(T).1 Suppose u5(x) and u5(x) are solutions to the problem
(2.2) with the right-hand sides — fi(x) and — fa(x) respectively. Then in view of (2.7)

L(VEW(:I:/E, e)’e=w§(m)) - VW (x/e, e)|e=vw—;(z))) - V(ui(z) — ug(x))de

= [ (1(2) ~ £@)(w (@) - w(@)de.

Using the inequality (2.6) we obtain

/T (VW (@/5,0)] _qusyy ~ VW (@/e10)] o o)) - V(05(@) = u5(@))dm

> a /T V(i (@) - us(@)Pde = aflui(@) — wi(@)f -

On the other hand, the following inequality holds

|L(51@) - £a@))(ws(@) — us(@))da| < i = fallownyluf = u3llasemy <

1Derivation of (2.7) uses the fact that for a smooth convex function W (¢, e) satisfying (2.3)
|[V.W(€,e)| < A+ Ble|P~! with some positive constants A and B.
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<cfi - fZHLP’(T)”'u’i - u;”W(}';T(T)a c>0,
where Holder and Poincaré inequalities have been used. Hence, we conclude that

1

€ I3 c p-1
[lug — “2||W01;'H(T) < (a”fl - fZHLP'(T)) : (2.8)

3 Formal asymptotical procedure

Following a sketch in Bakhvalov & Panasenko (1984), we are seeking a formal asymp-
totic expansion of the solution to the problem (1.1) in the following form separating
the “slow” and the “fast” variables

w(z) ~ 2 e u(w /e, @), (3.9)

where the functions (€, ), 1 = 0,1, 2, ... are Q-periodic with respect to the “fast”
variable £ = x /¢ and T-periodic with respect to the “slow” variable . The idea of
the classical “ansatz” (3.9) is to seek the solution as a decomposition in sequential
powers of the small parameter € whose “coefficients”, the functions u;, are periodic-
ally oscillating with respect to the fast variable while the oscillation parameters are
modulated by the dependency on the slow variable x.

Substitution of the ansatz (3.9) into the original equation (2.2) leads us to a more
specific structure of the functions v (£, ). Namely, further we consider the following
ansatz

uf(x) ~ v(x,e) + islul(w/s, Vu(z,e), VVo(z,¢), ..., Viu(z, €)), (3.10)
where -
v(x,g) ~ Zos"vs(m). (3.11)

Functions (€, Vu(z), VVu(z), ..., Viu(z))) are Q-periodic in £ and have zero mean
over @ in &; functions v,(x) are T-periodic with zero mean over T, and do not depend
on the fast variable £ = /.

Now, substitute the series (3.10) into the equation (2.2). After differentiation,
formal application of the Taylor formula and another differentiation we end up with



a formal asymptotic series in the left-hand side of the equation:

S S H(E, Vo(z), VVu(), .., ViHu(a)) = —f(z), (3.12)

I=—1

where the functions H;(§, Vv(x), VVv(x), ..., VIT20(x)) are Q-periodic in &. In par-
ticular,
H—1(£7 Vv(m)) = diVé‘j(E, V’U(m) + v§u1(€7 V’U(il:))),

Hy(¢, Vo(z), VVo(z)) = divej (€, Vo(x) + Veu (€, Vo(z)))
+dive(Vei (€, Vo(@) + Veur (€, Vo(x)))
{(Vau1(€, Vo(@)) + Veua(€, Vo(), VV()))).

At this point we are going to introduce some conditions on the functions
Hy(&,Vu(z), ..., V*2y(x)), which will later prove to be plausible in the sense that
they provide us with the way on which we can find an asymptotics of the solution
u®(x), which can be justified.

First, it is natural to require that the function H_; (&, Vu(x)) is identically zero:

diveg (€, Vu(x) + Veua (€, Vo(x))) = 0 (3.13)

This can be viewed as an equation for the function u;(€, z), where 2 € R% is a

parameter:
diveg (€, z + Veu (€, 2)) = 0. (3.14)

By virtue of the conditions formulated in the previous section, the last equation has
a @-periodic solution u;(§, z), which is unique up to an arbitrary constant. We
impose the condition (u;(¢, 2)) = 0 for any 2 € R¢, which provides a unique solution
uy (€, Vu(z)) to the equation (3.13). Note that the function v(z) is still unknown.
The function u;(&, z) is a nonlinear version of the solution to the periodic unit-cell
problem. It minimizes the functional

/Q W(E, z + Veu(€, z))dE. (3.15)
It is well-known (see e.g. Ladyzhenskaya & Uraltseva, 1968) that u; (€, 2) is smooth

with respect to € as a minimizer of regular functional (3.15). In fact, it can also
be shown that under the assumptions on the function W (&, e) listed in Section 2



the function u; (€, z) is smooth with respect to the pair of arguments & and z. The
derivation is nontrivial and uses the implicit function theorem in functional spaces.

Proceeding further, we require that the functions H;(§, Vu(z), ..., V:+2u(z)) for
[ > 0 do not depend on &, i.e.,

H(£, Vo(x), ..., VH2(2)) = h(Vo(a), .., ViP(x)), 1=0,1,2,..  (3.16)

for some functions A; depending on the slow variable only. This requirement gives a
set of recurrence relations for the functions (€, Vu(z), ..., Viv(x)), I > 2.

For example, the condition Hy(&, Vv(x), VVu(z)) = ho(Vu(x), VVu(x)) gives
us the following equation for the function uy(€, Vu(x), VVu()) :

div, (Vej({-‘, e)lezvu(z)+V£u1(§,Vv(a:)) - Veua(€, Vo(z), VV'U(:I:)))
= ho(Vu(z), VVo(z)) — div.j(§, Vo(z) + Veui (€, Vo(z)))
_diVE (Vej(ﬁ, e) |e=Vv(:v)+V5u1(§,Vv(a:)) -V (E: Vv(m))) (3'17)

For better understanding of the structure of the last equation, introduce parameters
z € R? and w € R%*? standing for Vov(x) and VVu(z) respectively.
The equation (3.17) takes the following form

dive (Vej (€, €)|e=z4Veur(e,z) - Vewa(€, 2, 'w))

= hO(ziw) - V;J(&, z+ veul(ga Z)) Cw

—dive(Vej(€ €)le=z+veue,z) ® V. (€, 2)) - w. (3.18)
Note that this equation for us(€, z,w) with respect to £ with parameters z and
w is linear. Further, since by our assumption j(&,e) = V.W(€,e) and hence

Vi€, e) = (V)2W (¢, e), in view of (2.4) the equation (3.18) is uniformly elliptic.
The smoothness of u;(€, z) with respect to € and 2 ensures the smoothness of the
right-hand side of (3.18) and therefore the smoothness of us. It is well-known that
for solvability of such an equation it is necessary and sufficient that the average with
respect to & of its right-hand side is zero. This condition gives us the formula for the
function ho(z,w) as follows

ho(z, w) = Vj(z) - w, (3.19)

where 7(z) = (j(&, z + Veui (€, 2))).



Define the function hy(z,w) by the formula (3.19). Then there exists a unique
solution of the equation (3.18) with zero mean over Q. It could be further shown
routinely that in the same fashion the functions (&, Vu(z), ..., Viv(x)),l = 3,4, ...
can be found. The equations for them will have the same structure

diV{ (Vej(E, e)le:V’u(z)+V§u1(§,Vv(m)) ' Vﬁul(g, Vv(a:), ey Vlv(w)))

= hy_y(Vo(z), ..., Viu(x)) — F(&, Vo(z),..., Viv(z)), (3.20)

where the function Fj(¢, Vu(z), ..., V'v(z)) can be expressed in terms of the functions
up (&, Vo(z), ..., Viv(x)),l! = 1,2, ..., — 1, which are already known.

The equation (3.20) is obviously linear and uniformly elliptic, so the solvability
condition for this equation is following

hi_o(Vo(), ..., Viv(z)) = (Fi(€, Vo(z), ..., Vio(z)))

The last equation defines the function h;_»(Vo(z), ..., Viu(z)).

The function v(z) is still unknown.

Now as a result of the above construction we have, from (3.12), (3.16), a formal
asymptotic equation in the following form involving only the slow variable z

gslh;(Vv(m),VVv(m), s VH20(2)) = — f(). (3.21)

This equation can be resolved formally by substituting into it the series (3.11) and
performing some formal transformations, namely, a series of differentiations in the
arguments of the functions h; and then expanding slowly varying functions h; into
the Taylor series in powers of . On this way we obtain a sequence of equations for
the functions v,(x).

The first equation of this sequence is following

ho(Vvo(z), VVro(z)) = — f(z). (3.22)
Recall that from (3.19)
ho(Vvo(x), VVu(x)) = div 7(Vue(z)),

where 7(2) = (j(&, 2+ Veui (€, 2))). We review in the Appendix A the fact that there
exists a potential function W(z) for the equation (3.22) such that

3(z) = VW (2). (3.23)

8



The function W (z) = (W(€, z + Veui(€, 2))) is the “conventional” effective, or
homogenised, energy for nonlinear periodic homogenisation.
Hence, the equation (3.22) reads

div (VW(z) zzwo(m)) = —f(x)
and admits the equivalent variational formulation
min / (W (Vo(z)) — f(z)v(z))dz. (3.24)
v(2)EWo 5, (T) I T

The homogenised energy W (z) inherits all the properties of the function W (£, e)
that are of importance to us. In the Appendix B we show that if (2.3) is satisfied
then the similar growth condition is fulfilled for W :

—A; + By|zP < W(2z) < Ay + B|z|f for any z € R?, (3.25)

and in the Appendix C we verify that the function W(2) has the property of strong
monotonicity:

(VW (21) = VW (22)) - (21 — 22) > o 21 — 2, (3.26)

as long as (2.6) holds. Also, we prove in the Appendix A that if (2.4) holds then the
similar inequality holds for W :

W (2)

92207, N5 > VIR, (3.27)

for any z,n € R?. Note that all the constants (p, A1, Az, By, B, o, V) entering (3.25)—
(3.27) are the same as in (2.3)—(2.6).

Hence, the equation (3.22) has a solution, which is unique up to an arbitrary
constant. We choose the function vp(x) to have zero mean over T, i.e. [p vo(z)dz = 0.
If W(z) is smooth?, it can be shown that the minimizer of (3.24) is smooth (see e.g.
Ladyzhenskaya & Uraltseva, 1968).

2Smoothness of the function W (z) is ensured by smoothness of u; (£, z), see the discussion on
p.6.



The second equation of the sequence obtained by substituting the series (3.11) into
the formal equation (3.21), i.e. the equation for v;(x), is linear and can be written
in the following way

<8hg(z, w) ui(®) , Oha(z,w) 821)1(:1:))

8zi Ba:,- 8w,:j 6:1:,; 8$j 2=Vvo(z),w=VVuo(z)

= —hy(Vup(z), VVuo(z), VV V(). (3.28)

Note that A
ho(z, w) = V3(z) - w,

where 7(z) = VW(z), and so the following identities hold

6h0(z,w) _ 0 (8h0(z,'w) ) —
azi z=Vvo(z),w=VVuvo(z) (923_7' awij z=Vuo(z),w=V Vuvg(z)
-
_ 9 (IW(z) Ci=1,..d.
8:6,— 8z,-6zj #=Vuo(z)

In view of these identities we rewrite the equation (3.28) in a divergence form as
follows

) (32W(z) dvy ) ~ fi(), (3.29)

aiL‘i Bziazj 2=Vo(z) 3.’)3']'

where fi(z) = —h1(Vvo(x), VVvo(x), VVVr(x)). It can be shown that the function
fi(x) has zero mean over T. The linear equation (3.29) is uniformly elliptic by virtue
of (3.27). It follows that there exists a unique solution v; () of (3.29) with zero mean
over T.

In the same fashion one can proceed with this recurrent procedure of finding the
functions v,(x),s = 0,1, ... and see that at the s-th step the equation for v,(x) can
be obtained, which has the following form akin to (3.29)

) (32W(z) Bva) = f.(2), (3.30)

Ba:,- az,;azj 2=Vo(z) aiL'j

where the function f,(x) is expressed in terms of the functions vy, v1, ..., v,_1, which
are already known, and has zero mean over T.

The equation (3.30) is linear and uniformly elliptic, thus the solution v,(x) with
zero mean over T does exist and is unique.

This completes the procedure of constructing a formal asymptotic solution for the
nonlinear equation (1.1).
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4 Justification of the formal asymptotics (3.10),
(3.11)

The asymptotics (3.10), (3.11) can be justified in the following sense. If we truncate
both series (3.10) and (3.11) and substitute the truncation of the second series

K
oE)(z,e) =Y e*vs(x). (4.31)
s=0
into the truncation of the first one

K
uB) (z,6) = v (,e) + Y elw(& /e, Vol (z,€), VVuli(z, ¢), .., VieE)(z ¢)),

=1
(4.32)
then the following inequality holds with some constant Cx_;
[|uf(z) — U(K)(w: E)”Wol}f’er(T) < Cg_1e¥7h (4.33)

We prove the inequality (4.33) in the following way. Substitute the sum (4.32)
into the original equation (2.2). Using the well-known formula for the remainder of
the Taylor series and formulas for the functions H; obtained in the previous section
we get

div 3 (m/s,Vu(K)(a:))

K-2
= —f(z)+ > Hyz/e, VolE (@), Vo) (x), ..., V2 ()45 Ry (x /e, ),

I=—1
where Rg_1(€, ) is certain polynomial of Vg uy+Veus,...,.Voug_1+Veug, Voug and
of (Ve)'W (€, €)e=ey(z) With 1 <1 < K + 1 and uniformly bounded vector functions
e;(x). Since the potential W (€, e) is assumed to be infinitely smooth for £ € ) and
e € RY, the remainder Rx_;(€, ) is uniformly bounded by some constant C_;.
Proceeding further, we recall that H_, (&, Vol¥)(z)) = 0 and also in view of (3.16)

Hy(&, Vo (a), ..., VF2E) (£)) = hy(VoB)(z), ..., VTHE) (2)), 1=0,1,2,...

Thus,
div 5 (m/e,Vu(K)(w)) =

11



K-2
= Y (VB (z), VVulB(z), ..., V20 E) (@) + X TRy (z /e, ). (4.34)
1=0
Taking into account the recurrence relations (3.30) for the functions vo(x), ..., vk ()
we get (c.f. (3.21))
K-2
Y (Vo) (z), VVolB) (), ..., V2 E) () = — f(x) + ¥ Prga(x),  (4.35)

=0

where rx_;(x) is a polynomial of V'vy,...,Vivg with 1 < I < K and of the deriv-

uniformly bounded vector functions zl(:z:),..., zj42(x). Hence, the remainder rx_;(x)
is uniformly bounded by some constant Cx_;.
From (4.34) and (4.35) we achieve the following equality

div j (m/s, Vu(K)(w)) = —f(x) + 5 YRy _1(z /e, ) + rr—1(2))

= —f(x) + ¥ 0k _1 (2, €),
where IQK_]_(QJ,EN < CK_1 b C’K—l + C’K—l-

The inequality (4.33) now follows from (2.8).
5 Some further remarks and prospects

Infinite order homogenised solution

We execute an idea introduced in the paper by Smyshlyaev & Cherednichenko (2000)
to cancel the effect of rapid oscillations in the asymptotics (3.10) by considering a
family of “translated” problems of the form (2.2) with a parameter { € @ :

div j (2/e + ¢, Vui(z)) = —f(x), €>0. (5.36)

For any ¢ € Q the problem (5.36) has a unique solution u%(x). Consider the
averaging of this solution with respect to the parameter ¢ :

@*(z) = /Q uS# (2)dC.

12



Then for any K = 0,1, 2, ... the following estimate holds with some constant C¥) > 0

The proof is completely analogous to that given in (Smyshlyaev & Cherednichenko,

2000).
Therefore, 4°(x) may be called the infinite order homogenised solution and (5.37)

implies that the series (3.11) is the asymptotics of @°.
Higher order homogenised variational problems

In the same fashion as in the paper (Smyshlyaev & Cherednichenko, 2000) we can
consider a family of variational problems with a parameter ¢ € Q :

e, ) =mipB(w, /)= min [ (W(w/e+¢ Vu(e)) - F()u(x))d.

EVVO ;er

Introducing the ¢-averaged energy functional

f(e,f):/QIC(s,f —5&1,?/ Ef(u

= mm/ /( (x/e+¢, Vu(a:))—f(a:)u(a:))dmdc

u(z,¢)
we restrict the last minimisation to the set

&) — {u(w ¢) e Woper( ) u(z, ) = v(x) +I:=Z_:slw(§ +¢, Vu(x), ..., vly(:c))} ,

(5.38)
where v(x) € W, pe,.(T), the set of all T—periodic functions from the Sobolev space

W5P(R%). Then

min f f (W(=/e + ¢, Vu(z)) - f(2)u(e))dedd

u(z ()eUE) JT JQ

= min /T (W(Vo(e), ..., V¥u(@)) - f(a)v(z))da. (5.39)

v(z)

13



In the last formula
W (Vo(@), ..., VEu()) = (W(z/e + ¢, Pk (@/e + ¢, Vou(@), ..., VEu(2)))),

where @5 (z/e + ¢, Vo(x), ..., VEu(z)) is a finite sum in powers of € akin to that in
the definition of the set U®).
The functional

/T (W(K)(Vv(m), oy VEu(2)) — f(m)v(m)) dz (5.40)

is convex in the linear case (see Smyshlyaev & Cherednichenko, 2000). It is unknown
if (5.40) is convex also in the nonlinear case. If so, then there exists a solution vk (x)
to the problem (5.39) and it is natural to call it the homogenised solution of order K.

Otherwise, one may need to choose differently the truncation procedure leading
to (5.38) and determining the minimisation set U¥) in (5.39). We are going to
investigate this in detail in future.

Applications to non-uniformly elliptic problems

In our analysis so far we substantially used the ellipticity condition (2.4). How-
ever, in many applications potential functions W (€, e) arise that do not satisfy this
condition at some points. One of the most well known examples is the so called
power-law potential

W e)=v(&)lef, p>1, (5.41)
where 7(€) > -y > 0 is some smooth function. If p > 2, the function (5.41) does not
satisfy the inequality (2.4) in the vicinity of the point e = 0. However, there have
been a number of works providing some indication that in the case of the potential
(5.41) one can expect that in the dimension two (d = 2) the expression 2+ V,u; (£, 2)
(c.f. (3.14)) does not take zero value i.e. |z + Veuy(€, 2)| > 6(2) > 0 for z # 0 (see
e.g. Alessandrini & Singalotti, 1999; Bauman et al, 1999).

Alternatively, if d # 2, the function 2+ V,u, (&, 2) may vanish and hence the linear
operator in the equations for us, us,etc (see (3.20)) ceases to be uniformly elliptic. In
this case methods of analysis in weighted spaces (see e.g. Zhikov, 1999a) may still
be applicable. These issues need further accurate consideration and we are going to
study them in more detail in the future.

On the other hand, it is known (see e.g. Zhikov, 1999b) that the loss of uniform
ellipticity (in the linear problems) may lead to “non-classical” homogenised limits (in-
volving e.g. non-locality). From this point of view, it is of interest to explore possible

14



relations between nonlocal effects and higher order terms in homogenised equations,
as well as the possibility of non-classical effects in the nonlinear homogenisation.

We are also going to study in more detail the structure and properties of higher
order homogenised equations for particular examples (both in linear and nonlinear
cases) and their implications in particular applications.
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Appendix A: Proof of the inequality (3.27).

In this appendix we follow the argument of Bakhvalov & Panasenko (1984).

Lemma.

Let a function W =W (¢, e), €, e € R? be Q-periodic in ¢, @ = [0, 1)¢ and satisfy
the following inequality with a positive constant v

PW(E, e)
—=GiC; > VGG Al
aeiaej C CJ - VC C ( )

for any €, e = (e1, .-, €4), € = ((1, -, Ca) € RY.

Define the function W(z) as follows

W(@) = inf (W(€ 2+ V9(©))) (A.2)

where the infimum is taken over the set of all @-periodic functions ¥(§).
Then the following inequality holds

W (2)

5Ny = VT A3
aziazj 7777_1 _V7777 ( )

for any z = (21, ...,24), 1 = (11, ---, 7a) € R%.

Proof:

Denote j(&,e) = V.W (&, e). It is easy to see that the Euler-Lagrange equation
for the minimisation problem (A.2) is

divej (€, 2 + Vep(€, 2)) = 0. (A.4)

It obviously coincides with the equation (3.14), i.e. 1 = u;(€, 2) is the minimiser for
the problem (A.2).
Let us introduce the following notation

Y(Ea Z) =z+ vﬁul(E’ z)
and substitute e = Y (¢, 2) and { =Y , 7, into the inequality (A.1).
Thus
FWee)| M) MEx) | (z) iz

Oeide; |y, 02¢ = Oz, T 0z, ' 0z,
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Taking the average with respect to & over @ in the last inequality we get

0Y(€,z) OYi(¢,z) \

> (A
/BQT'(Z)UQTI”' - ’/< 3Zq T}q 627. T’r/, \A )
where

otz = (F80)) 2o 2(62))

e Oe;0¢e; e=Y(£,2) 0z, 0z,

_ [ PW (€, e) ((5- +32u1(£,z))3Yj(£,Z)

T\ e |oyen RI3GER 0z,
_[PW(E e 9Y;(¢, 2) FW(E e) 0?1 (€, 2) 9Y;(€, 2)
=\ "2, 3. + (A.6)

36(136]' e=Y(£,2) 8zr 66i6€j e=Y(£,2) 8§i8zq 8zr

We claim that the second term in (A.6) is identically zero. To verify this consider the
equation (A.4). Multiply its both sides by some arbitrary function ¢ = ¢(€), take
the average with respect to £ over ), and integrate by parts. We get

(i€ 2+ Veus(€,2)) - V9(€)) = .

Differentiate the last equality with respect to z, and note that j(&,e) = V.W (¢, e).
We come to the following equality

<62W(§, e)

8Y;(&, 2) 6¢(£)> _o. (A7)

Oe;0e; Oz, 0

e=Y(£,2)

This equality holds for all z € R%. Now, set ¢,(¢, z) = (u1(€, 2)) 4, for every z € RY,
g =1, ..., d. Substituting the functions ¢4(&, z) instead of ¢(£) into the identity (A.7)
we successively get

W (€, e)
Oe;0¢;

BY}(E,z) 82’11,1(5,2) =0
0z,  0&dz, |

e=Y(¢,z)
for all z € R4, g =1, ...,d. Hence,

_ [PV e)
o= o

o6

e=v(es) O%r
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To verify that the following identity holds

PW(z)
02,0z’

Bar(2) =
differentiate the equality

W(z) = <W(£, 2+ Veuy (€, z))>

to get .
W (z) _[OW(E e) L Pu(g 2)
0z, _< 0¢j  lomyie,) (61' + 8¢;02, )>
- <M > N <3W(£,e) azul(s,z)>
Oeq  |emyie,) O; |ooy(e. 060z [

Integrate by parts in the second term of the last sum and note that
diVE (veW(£’ e)'e:Y(E,z)) =0

in view of (A.4). Thus,

(=2

a2u1(g,z)> 0

8{,;3zq
oW (z) _ <6W(£, e) >
02, Oeq =Y (£,2)
Differentiating the last equality one more time we obtain the following identity

W (z) _ <62W(£,e)' 31’1(6,2)>,

02,02z,  \ 0Oe,0¢;

0z,

e=Y({,2)

for all z € R® and so

e=Y(£,2)

which immediately implies i
_ 0*W(=2)
"~ 02,02

ﬁqr(z)
for all z € R4,
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Note finally that the following estimate holds
Y \? 0*ui (€, 2)\?
i} — 5; —’) 2
(Goin) )= (e Z5ea)

_ Bzul(E,z) azul(é’z) 2
_<ﬁ+2a&m +<zmmq)ﬁ>

?uy (€, 2)\?

2 1S 2 2
=24+ (| —=222 > 2.

771 <( 0€:0z, ) g ) =T

foranyi=1,...,d.

Now, taking into account (A.5) we get

W (z)
02,02,

NgTlr = VTiTi

as required.

Appendix B: Growth condition for the homogenised
energy.

Some ideas used in the proof of the following lemma can be found in mathematical
literature (see e.g. Jikov et al, 1984).

Lemma.
Let a function W = W (¢, e), &, e € R? be Q-periodic in £, Q = [0, 1]%. Suppose
there exists v > 0 such that the following inequality holds

W (€ e)
WQQ > V(i

for any €,e = (ey,...,eq),¢ = ({3, ...,¢a) € R? and the function W = W (¢, e) also
satisfies the following estimates

—A; + Bileff < W(E,e) < Ay + Byleff for any £, e € R? (B.1)

with some positive constants A;, Ay, By, B and p > 1.
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Define the function W (z) as follows

W(z) = inf (Wi, 2+ V(&) (B:2)
where the infimum is taken over the set of all @-periodic functions ¥(€). Then
—A; + BilelP < W(z) < Ay + By|z[|P for any z € R (B.3)

Proof:
Taking (&) = 0 we conclude that

= it (W, 2+ VH(€)) < (W& 2)) < Aa+ Bal=.

so the right-hand inequality in (B.3) is proved.

If p =1 then the left inequality in (B.3) is trivial.

Suppose p > 1 and consider the Legendre transform (convex dual) of the function
W = W (g, e) with respect to e :

W*(Ea T) = SEP{T "€ — W(€1 e)}

W(z)

Taking into account the left inequality in (B.1) we get
W*(§,7) <sup{r-e+ A — Bile[’}

1

= A, +B ——1(—1’) B.4
1+ Bi(p — 1) ; Bl| | (B.4)

It is well-known that for the convex dual of the homogenised energy W
W () =_(a):£ngo<w (&,5©)), (B.5)

where o(&) is @-periodic. (The proof of this fact is beyond the scope of the present
preprint, see e.g. Toland & Willis, 1989.)
Combining (B.4) and (B.5) we come to the estimate

. 1 o1
W*(5) < A1+ By(p— 1) (I-Eia) .

Thus, X .
W(z) =sup{ad -z — W*(a)} > —A1 + By|z|°

as required.
Note that in the above proof we substantially used the fact that the functions
W (&, e) and W(z) are convex with respect to e and 2 respectively.
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Appendix C: Strong monotonicity of the homogen-
ised energy.

We aim here at proving the following lemma.

Lemma.
Let a function W = W(¢,e), €,e € R? be Q-periodic in &, @ = [0,1]¢ and
strongly monotonic, i.e.

(veW(Ea el) - VEW(£7 82)) . (el - 62) 2 alel - e2|p1 a > 07 D >1 (Cl)
for every £ € T and any e;, e; € R?. Define the function W (z) as follows

W(z) = inf (W(E, 2+ Vo (€))) (C.2)

where the infimum is taken over the set of all @-periodic functions 9(£).
Then the function W(z) is also strongly monotonous:

(VW(zl) - VW(zz)) : (z1 - zz) > alzy — zaff. (C.3)

Note that the parameters o and p in (C.3) are the same as in (C.1).
Proof:
Apply averaging with respect to & € @ to the inequality (C.1) where e; = 2; +
ui(€,21) and ey = 22 + u1(§, 22).
Using the identity A
VW (z) = <veWIe=Z+u1(£,z)>

proved in the Appendix A we come to the following inequality
(VW(zl) - VW(zz)) : (zl - z2)
+<(VEW(E’ e) |e=z1+V£u1(£,z1) _'VGW(S; e)|e=21+U1(£,21)) ’ (Vﬁul(Ea zl) _V§u1 (E: 22))>

> a<|z1 23+ Vui(€, 21) — Vs (€, z2)|p>.

Integrating by parts in the second term of the left-hand side of the last inequality
and using the fact that

div, (VEW(ﬁ, e)|e=z+VEu1(E,z)) =0 for any z € R?
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we conclude that this term is zero.
Finally, from the periodicity of the functions u;(&, z1) and u; (€, z2) with respect
to € we get (using Holder inequality)

<|Zl — 25+ VU1(£7 Z]_) - V'Uzl(E, zz)lp>

P
> <Z1 —zg+ Vuy (€, 21) — V’u1(€,22)>‘ = |z1 — 25,

that gives us the required right-hand side in (C.3).
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