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Abstract

The construction of generalized Hashin-Shtrikman bounds for non-
linear composite problems relies on the introduction of a comparison
material. In recent work a nonlinear comparison medium has been
used; however this requires detailed knowledge of the properties of
the trial fields that are employed. The fields used have the property
of ‘bounded mean oscillation’ and this enables the size of the penalty
exacted by using a nonlinear comparison material to be controlled.
Some recent results concerning Riesz transforms and the Beurling op-
erator are used here to reduce the effect of the penalty and hence to
generate improved bounds. In addition, an exact solution is estab-
lished for a particular class of composites.

1 Introduction

The composites considered here consist of a mixture of two dielectric phases.
Each phase is characterized by a convex energy function, which, to be definite,
is assumed to grow at least as fast as quadratically at infinity. One approach
that has been used to bound the overall energy function of such materials was
developed by Talbot & Willis (1985) and Willis (1986) and is the extension to
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nonlinear problems of the variational principles of Hashin & Shtrikman (1962;
1963). The methodology relies on the introduction of a comparison medium
and, for the composite considered here, a lower bound can be obtained by
choosing a linear comparison medium. However, if the energy of one of
the phases grows faster than quadratically a finite upper bound cannot be
obtained by such a choice. In Talbot & Willis (1994; 1995) this difficulty was
avoided by using a nonlinear comparison medium which was linear up to some
value of the field and nonlinear thereafter. The introduction of nonlinearity
exacts a penalty which is a function of the size of the set where the trial
field used is large. The trial fields used by Talbot & Willis (1994; 1995) have
the property of bounded mean oscillation (John & Nirenberg, 1961) and this
property was used to bound the size of this set. This enabled a new bound
to be constructed which showed a small improvement on bounds obtained by
elementary methods.

In Talbot & Willis (1994; 1995) a uniform comparison medium was used.
An alternative is to use a comparison material which is itself a composite.
Linear comparison composites were first used by Ponte Castafieda (1991) to
obtain bounds for nonlinear materials which involved a bound for the linear
composite. More recently, upper bounds have been obtained by Talbot &
Willis (1996, 1997, 1998) using a comparison composite whose behaviour
in each phase is linear up to some magnitude of the field and nonlinear
thereafter. The resulting bound is sensitive to the three-point statistics of
the microstructure through parameters introduced by Milton (1981), who
also demonstrated that they must lie in certain ranges. Taking the extreme
values generates bounds which are valid for all three-point statistics and
which, for linear dielectric materials, coincide with the Hashin-Shtrikman
bounds. However for nonlinear materials upper bounds obtained in this way
improve on bounds obtained using a uniform comparison material. Lower
bounds for composites of the type considered here which involve three-point
statistics were obtained by Ponte Castafieda (1992).

When using a nonlinear comparison composite there is still a penalty as-
sociated with the nonlinearity. In this paper some recent results of Bafuelos
& Wang (1995) for Riesz transforms and Astala (1994) for the Beurling op-
erator are used to obtain an improved bound on the measure of the set over
which the trial field is large. In addition, for a composite consisting of one
linear and one nonlinear phase, an exact solution is obtained for a class of
microstructures.



In §2 the bounding procedure using a comparison composite is briefly
outlined. Section 3 develops the new bounds for the penalty term. In §4
some results are presented for a particular composite and an exact solution
is identified.

2 Formulation

The composite to be considered is a two-phase dielectric occupying a ball B
of unit radius in d dimensions. Here d is 2 or 3 and the ball is centred at
the origin. The scale of the composite is taken to be so fine that the shape
of B has no influence and hence there is no loss of generality in considering
a ball. The microgeometry is also assumed to be statistically isotropic. The
constitutive behaviour is described by an energy function
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W(E,x) = 3. W,(E)x:(x), (2.1)

r=1

where E is the electric field, W, is the energy function of material of type
r and y, is the characteristic function of the region occupied by material
of this type. The functions W, are assumed to be convex and functions of
| E | only. The problem is to bound the mean energy, W, of the composite,
defined by

W(E) = — inf / W (E, x)dx, (2.2)

s
where

K= {E . E=-V4, |B|" [ B(x)dx= ‘E‘} (2.3)

and | B | denotes the volume of B. An upper bound is constructed by
introducing a comparison composite with energy function W(E,x), having
the same microgeometry as the nonlinear composite and defining

(W — W).(P,x) = i%f{P -E—W(E,x)+ W(E,x)}. (2.4)
Substituting the upper bound implied by (2.4) into (2.2) now gives

|B|W(E </ [P-E + W(E,x) - (W - W).(P,x)] dx (2.5)



for any field P and any E € K. Each W, is now assumed to grow at least
quadratically.
Let

W(E,x) = . We(E)x:(x) = 3 seor | E[? x,(x)+ N(E)H(| E | —3) (2.6)

r=1 r=1
where the constants A, &g, remain to be chosen and H denotes the Heaviside

step function. The function N(E) depends on the application and grows at
least as fast as any of the W, as | E |— oo. It follows that

2
BIWE) < [ [Z teor | B2 xe(x) + P-E = (W — W).(P, )| dx
r=1
+ N(E)dx, (2.7)
S
where Sy = {x € B : | E(x) [> A}. The last term in (2.7) is the penalty
for taking W to be non-quadratic. The bound of Talbot & Willis (1994) is
recovered by setting eq1 = €02 = €0, say, and choosing N(E) appropriately.
The polarization P is now chosen to have the piecewise constant form

P= P1X1 + P2X2 (28)
and the trial field E is taken as

E = E - I(fin)(x), (2.9)

where 77 is a constant vector and

h(x) = xi(x)—c, x€B

0, x ¢ B, (2.10)

022G

Oz;dz;’
where GG is the infinite body Green’s function for a medium with dielectric
constant equal to unity. It is easy to check that the integral of I over B is
a constant. It follows that the mean value of the right side of (2.9) is E as
f1 has zero mean value. Substituting the trial field (2.9) into (2.7) leads to
an expression which involves the one, two and three-point statistics of the
composite. The terms involving three points can be expressed in terms of

with ¢; the volume fraction of phase 1. The kernel of the operator I is
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the parameters (; and (2 = 1 — {3 of Milton (1981) and the terms involving
two points are dealt with by using the results

L ITGm) Pax < [p. I T(hm) Pax = [ AGom- T(fim)(x)dx

C1C2

[ fiGem - T(imxax = 221, (2.11)

where ¢; = 1 — ¢;. The result after minimizing with respect to P, and P,

and using the fact that (W — W), = —(W — W)** is

~ o — | = d_l T sk /] TN
|B|W(E)S 5] {%601 [IE—E%"HZ‘F( )02§1|77|2]—(W1—W1) (|E—c—

=1 !)}

o | P| — (¥ = Wa)( B+ S )}

d

4]

d

d?

(d—-1)

7+ =

+ ¢ {%602 {|E+
+ /S N(B)dx.

Further details can be found in Talbot & Willis (1996). The best bound
follows by minimizing the right side of (2.12) with respect to €o1, €02, A and

7.
3 The nonlinear penalty term
First let N(E) = N1(E)x1(x) + No(E)x2(x). Then, with
v(s) = max {N,(s)}, (3.1)

the penalty term is bounded by

[ w(s)du(s) (3.2)

where
p(s)=l{xeB :|E|>s}|. (3.3)

The composite is isotropic and hence it suffices to take E = (E,0,0) and
1 = (n,0,0)E. In this case the components of the trial field are given by

E,' = E((Sﬂ — Fil (fl)n) ‘ (34)
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Let g be the vector with components g; = T';1(f1). Then
E=E —gnFE (3.5)
and if | E |2> s? at least one of the |E;|? is greater than s%/d. Hence

d
(xe€B:|E|>s}CJ{xeB : |E|>s/d}

i=1

and it follows that
d
w(s) < [{x€B : |Bi|> s/y/d} | (3.6)
=1

Next, if |E1| > s/+/d, then |g1||n|E > s/+/d — E. Hence

Ve

with similar expressions for the remaining components of E. It follows that

S — \/d 5i1E
JdnE H (37)

and the problem now is to bound | {x € B : |g]| > s} |.

In Talbot & and Willis (1994) a bound on w(s) was established by us-
ing the fact that the operator I' that was used has the property of bounded
mean (square) oscillation. In this work the estimates are improved by ex-
ploiting the relationship between I';; and the Riesz transforms. Now, T';; has
Fourier multiplier T';;(€) = £¢£;/|€|? and since the Fourier multiplier of the
Riesz transform R; is ¢¢;/|§| (see Stein (1979)), it follows that I';; = —R;R;.
Theorem 4 of Bafiuelos and Wang (1995) can now be used to get

1T ()l = BB (fo)lle < (P = Dl fill;,  p2=2. (3-8)

It follows that

|{x € B : |E1| >s/\/d} |< {XGB s | >

d

w(s) £

=1

{XEB : g >

{xeR* : |l > s} =|{xe R : [Da(f)| > s}| < (p%l)p IAlE, P2
(3.9)



The best bound follows by minimizing the right side of (3.9) with respect
to p for any given s. Some numerical experiments were performed and it
was found that a sufficiently accurate approximation to the minimum, which
is itself a strict bound, can be obtained by using p — 1 = s/(cme), where
¢m = max(cy, ¢3). Substituting this value into (3.9) gives

Hx € R : |gi| > s}l < (1—cp)e texp (—i) (1 + exp (ln (1 c’") i)) :
Cme€ Cm Cme€

(3.10)

This bound is valid for any number of space dimensions. However when

d = 2, a better bound can be obtained by using the results of Astala (1994) for

the Beurling operator 5. This is a complex operator with Fourier multiplier
£/€, so that in terms of Riesz transforms

S =R:— R} — 2R R,. (3.11)
Now R2 + R? = —1I, where I is the identity operator, so that
S =—-I1—-2R?—-2iRR,. (3.12)
It follows that
g =—3Re(S+I)(f1), g2=—34ImS(f1). (3.13)

Next, Corollary 1.7 of Astala (1994) states that, for any measurable set
E C B,

[ 150cs) | dm < | B log (%) (3.14)

where, due to work of Eremenko & Hamilton (1995), the constant « has been
identified as er. Following Astala (1994), let £, = {z € B : ReS(f1) > t}.
Then, as S has a symmetric kernel,

B, < Re/E+ S(fl)dmzRe/BfIS(XE+)dm gcm/B [S(xz, )| dm

< cnlE4log (“;"—+|) - (3.15)

Hence |E,| < aexp(—t/c¢n). The same argument can be used to bound

|E_| = |{z € B : ReS(f1) < —t}| and the result

{z€ B : |ReS(f1)| > t}] < 2arexp @i) (3.16)
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follows. Similar reasoning can be used to obtain the same bound on |{z € B : |[ImS(fi)| >
It follows that

2
Hze B : |g| > s} < 2e7rexp<—c—s+cm),

Hz€ B : |g2| > s} < 2emexp (_2_3) i (3.17)

Cm

Bounds on g(s) can now be obtained by using (3.10) in (3.7) in three di-
mensions and (3.17) in (3.7) in two dimensions. This immediately induces
a bound on the penalty term. One clear difference between the two cases
is that, in two dimensions the information in (3.14) used to obtain (3.17)
relates only to the values of S(xg) in B, whereas in using (3.8) to obtain
(3.10), the effect of the value of R;R;(f) outside B is included as well.

4 A special composite

In this section the special case of a composite comprising one linear phase
and one nonlinear phase is considered. Let

Wi(E) = i |E[? (4.1)
and
N(E) = (W2(E) — W3(\)) H(|E| — X)x2(x), (4.2)

so that v(s) = Wa(s) — Wa(X). Then, in (2.12), the minimum over €o; is
attained when €9; = €;. On using (3.2) and the forms for E and 9 given
after (3.3), (2.12) becomes

- | d—1
BIWE S o o |11- 2P+ o]
_ c d—1 : L
+ o {%EozE2 [|1+3177 |2+( 7 )ClCzﬂzl —(Wz—Wz)**(|1+%W|E)}

[ s)avs). (43)

When ¢{; = 1, it is shown in Appendix A that the bound (4.3) becomes



| B|W(E) < nlluin{éslclﬁz [(1 — cow)? + (d — 1)c2w2] + Wl 1+ qw | —E)},
(4.4)
This is exactly the lower bound when {; = 1 given by Ponte Castafieda
(1992), equation (3.23). Hence the right side of (4.4) is the overall energy of
the composite when (; = 1. An analogous result was obtained as the result
of a computation by Talbot & Willis (1998) in the context of bounding the
overall response of an elastoplastic composite.
For {; # 1 further knowledge of W is required. Willis (1986) and Talbot
& Willis (1994) considered the example

Wi(E) = ez |E|* +57 [E [, (4.5)

where €; and <y are constants. Taking N(E) = iv(| E |* =AY)H(| E |
—A)xa(x), it follows that (W — W3)** has the same form as a function con-
sidered by Talbot & Willis (1996). The bound can now be written

ClEl_Ez [(1 = %77)2 + (dd_ 1)02C17I ]

2 d—1
+ %Czé‘gEz [(1 n C1 77) - ( )01@772]

| B| W(E) <

(Ml

d d?
+ ch‘*( dn>4\11 A2, Xa) +’y/°° s)ds, (4.6)
where
L=t e (1490), =y 1149 @)

and ¥ is the function described in Appendix B of Talbot & Willis (1996).
Manipulation of formulae given there leads to

z —2y\?
¥(z,y) = %ywz—%( y) [z -2, s<y<iz,
= lyzx°, §x<y<%x2,
2
7 <uy.

(4.8)

Results have been obtained for the parameter values €3/¢; = 8 and ¢; = L.
Figures 1 and 2 show sets of bounds when d = 2 and d = 3, respectively. The
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outer two curves are the simple classical bounds obtained by substituting
constant trial fields into (2.2) and the principle dual to (2.2). The curves
labelled (a) and (b) are upper bounds when ¢; = 0. Curve (b) was obtained
by estimating the penalty using the results of §3, while for curve (a) the
results of Talbot & Willis (1994) were used. The remaining curves are (c),
the lower bound when (; = 0, calculated from formulae given by Ponte
Castafieda (1992), and (d), the exact result when {; = 1. It can be seen that
the results of §3 give an improvement over previous upper bounds which is
more significant when d = 2. When no information is available concerning
the three-point statistics of the medium, the best bounds now available are
curves (b) and (d).

Although it may be possible to improve further the estimate (3.10) (S.
Montgomery—Smith, private communication), the effect on the upper bound
is likely to be small. For the energy functions considered in this section,
Talbot (1999) used linear bounds for a particular microstructure and was
able to obtain tighter bounds for a nonlinear matrix—inclusion composite.

Appendix A. The upper bound when (; = 1.

When (; =1, ( =0 and in {4.3) it is necessary to find

min {36 || 1+ S0 P| = (W = w2)(1 1+ Sy | D))}

{
J

(A1)

First choose A >| 1+ %7 | E. Now
(W — Wy)(s) = Leozs® + (Wa(s) — Wa( M) H(s — X) — Wa(s) (A.2)

and this is convex for s > A. With the assumption that W is twice differen-
tiable it is clearly possible to choose €gz so that (Wy — W53)” > 0 for s < .
It follows that W2 — W, is a convex function for all s and particularly for
s =1+ | E. Hence (Wo—Wy)"(| 1+ | E) = (Wo—Wy)(| 1+ %7 | )
and (A.1) is bounded by W;(| 1+ %7 | E). The only term in (4.3) that still
depends on A is the penalty, so that, in the limit A — oo, the bound is given
by (4.4), where the change of variables w = n/d has been used.

10



References

Astala, K. 1994 Area distortion of quasiconformal mappings Acta Math.
173, 37-60.

Baiiuelos, R. & Wang, G. 1995 Sharp inequalities for martingales with ap-
plications to the Beurling-Ahlfors and Riesz transforms Duke Math. J.
80, 3, 575-600.

Eremenko, A. & Hamilton, D. H. 1995 On the area distortion by quasicon-
formal mappings Proc. Amer. Math. Soc. 123, 9, 2793-2797.

Hashin, Z. & Shtrikman, S. 1962 A variational approach to the theory of the
elastic behaviour of polycrystals J. Mech. Phys. Solids 10, 343-352.

Hashin, Z. & Shtrikman, S. 1963 A variational approach to the theory of
the elastic behaviour of multiphase materials J. Mech. Phys. Solids
11, 127-140.

John, F. & Nirenberg, L. 1961 On functions of bounded mean oscillation.
Commaun. Pure Appl. Math. 14, 415-426.

Milton, G. W. 1981 Bounds on the electromagnetic, elastic, and other prop-
erties of two-component composites. Phys. Rev. Lett. 46, 542-545.

Ponte Castaneda, P. 1991 The effective mechanical properties of nonlinear
isotropic composites. J. Mech. Phys. Solids, 39, 45-T71.

Ponte Castafieda, P. 1992 Bounds and estimates for the properties of non-
linear heterogeneous systems. Phil. Trans. R. Soc. Lond. A340,
531-567.

Stein, E.M. 1979 Singular integrals and differentiability properties of func-
tions Princeton University Press, Princeton.

Talbot, D. R. S. 1999 Bounds which incorporate morphological information
for a nonlinear composite dielectric Proc. R. Soc. Lond. A455, 3617—
3628.

Talbot, D.R.S. & Wiilis, J.R.. 1985 Variational principles for inhomogeneous
nonlinear media. IMA J. appl. Math. 35, 39-54.

11



Talbot, D.R.S. & Willis, J.R. 1994 Upper and lower bounds for the overall
properties of a nonlinear composite dielectric. I. Random microgeom-

etry. Proc. R. Soc. Lond. A447, 365-384.

Talbot, D.R.S. & Willis, J.R. 1995 Upper and lower bounds for the over-
all properties of a nonlinear elastic composite. In Proc. IUTAM and
ISIMM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in
Solid Mechanics (eds D. F. Parker and A. H. England), pp. 409-414.

luwer Academic Publishers.

Talbot, D.R.S. & Willis, J.R. 1996 Three-point bounds for the overall prop-
erties of a nonlinear composite dielectric. IMA J. Appl. Math. 57,
41-52 .

Talbot, D.R.S. & Willis, J.R. 1997 Bounds of third order for the overall
response of nonlinear composites. J. Mech. Phys. Solids 45, 87-111.

Talbot, D.R.S. & Willis, J.R. 1998 Upper and lower bounds for the overall
response of an elastoplastic composite. Mech. Mater. 28, 1-8.

Willis, J.R. 1986 Variational estimates for the overall response of an inhomo-
geneous nonlinear dielectric. In Homogenization and Effective Moduli
of Materials and Media (eds J.L. Eriksen, D. Kinderlehrer & J.-L.
Lions), pp. 247-263. New York: Springer-Verlag.

12



-2.5 -2 -1.5 -1 L_—0.5 0 0.5
log, [(7/€1))E|

Figure 1: A set of bounds when d = 2.
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Figure 2: A set of bounds when d = 3.

14

0.5

[y



