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Abstract

We show an equivalence between the approach of Buttiker and the Fermi
quantum stochastic calculus for mesoscopic systems. To illustrate the method
we derive the current fluctuations in a two terminal mesoscopic circuit with
two tunnel barriers containing a single quasi bound state on the well. The
method enables us to focus on either the incoming/outgoing Fermi fields in
the leads, or on the irreversible dynamics of the well state itself. The quantum

stochastic calculus we use is the Fermi analogue of the input/output methods
of quantum optics.
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I. INTRODUCTION

The theory of conductance in mesoscopic electronics was developed some years ago by
Buttiker, following upon earlier ideas of Landauer [1]. The conductance of a mesoscopic sys-
tem is given in terms of the scattering within and between quantum channels and involves
the transmission and reflection coefficients as well as the thermal occupation of reservoirs
feeding or draining those channels. The theory makes direct contact with measured currents
through averages of quadratic functions of Fermi field operators in the channels. The com-
putation of the scattering matrices depends on the nature of the systems connected to the
reservoirs, which could be a simple tunnel barrier or an array of coherently coupled quantum
dots. In the Buttiker approach once the scattering matrices are calculated we do not need
to refer to the dynamics of any local systems to which the input and output channels are
coupled. In many ways this theory is a Fermion analogue of the quantum description of
optical fields interacting with an optical cavity under the Markov approximation. Such sys-
tems are described by the input/output theory of Collett and Gardiner [2]. The properties
of the fields outside the cavity are determined by a scattering matrix connecting the input
and output fields to the cavity and the dynamics inside the cavity. The input/output theory
for optical fields has been shown to be an example of the quantum stochastic calculus for
Boson fields [3].

The Buttiker approach is particularly useful in determining measured properties of the
mesoscopic system, such as conductance. However recent interest in coherently coupled
quantum dots for quantum computation [4,5] has focussed attention on the dynamics of
localised systems, such as quasibound states on quantum dots, rather than the transport
through input and output channels. In the input/output theory of quantum optics, the
dynamics of the local system is described through a Markov master equation, and there is a
consistency between a description entirely in terms of the input and output modes and the
irreversible dynamics of the local system to which they couple. In this paper we establish the
connection between a description in terms of input and output channels and the irreversible
dynamics of a localised quasibound state on a single quantum dot. The analysis is easily
extended to more complex local systems. This enables us to make a connection between
two very successful theories, quantum optics and quantum mesoscopics, for the treatment
of quantum stochastic processes. We expect that analogies between gquantum optics and
mesoscopic electronics will prove useful as the latter explores the physics of strong coherent
coupling between local systems (eg quantum dots [6]), quantum limited measurements (eg.
using single electronics [7-9]), and proposals for quantum computation [4,5].

Our treatment will be based on a particularly simple system; a single quantum dot
coupled to two quantum channels, see figure 1, as this system is the electronic analogue of
a single Fabry-Perot cavity in quantum optics. The conductance properties of this system
can easily be obtained by the method of Buttiker [1]. Recently a similar result was obtained
using a Markov master equation description of the quasibound state of the dot [11]. In
this paper we give an equivalent description in terms of the quantum stochastic calculus for

Fermi fields.



II. QUANTUM STOCHASTIC CALCULUS FOR FERMIONS

The free Hamiltonian for a Fermion channel is

H= thkaLak (1)
k

where a; 1s a Fermi annihilation operator satisfying the anti commutation relations

ara; + aja = 0 (2)
aral + alay, = oy (3)

We now define the Fermi field operator

AR Z ake_i(“’"‘_“’“)t (4)
k

which represents free field dynamics with respect to a frame rotating at frequency wg. This
frequency will later be taken to characterise the energy of the quasi bound state to which the
Fermi field is coupled. The field operator satisfies the continuum anti commutation relations

a(t)at(t) + o' (t)a(t) = 6(t — t') (5)

QOur objective is to define a quantum stochastic process to accurately characterise the Fermi
statistics of these fields. To that end we define the integrated operators,

A(t) = idt’ (t (6)
()= [ dra(t)
and the corresponding Ito increment

dA(t) = A(t + dt) — A(2) (7

We now need to specify the state of the free fields. We will take these to be thermal
equilibrium states of a noninteracting Fermi system at temperature 7. It is then easy to
show, under appropriate assumptions that

(dA%) = ((dAN?*) =0 (8)
(dAtdAY = f(wo)dt (9)
(dAdATY = (1 = f(wo))dt (10)

where the equilibrium occupation probability f(£) is evaluated at the reference energy
Ey = hwg. Later this will be the probability that a free field Fermi state, resonant with
quasi bound state, is occupied. The important point to note here is that these quantities,
while quadratic in the field increments, are only first order in the time increment. This
is a quantum analogue of the classical Wiener stochastic process [12]. Stochastic integrals
of averaged field operators are found using a generalisation of the Ito calculus for classical
stochastic processes [13]. In particular we have,



/ " / ® WA AN X (DY () = / ) L Fwo) XY (1) (11)
/ " / ® W AAQ)IATE) X ()Y (F) = / M) 0 Z Fo) XY () (12)

where X (t), Y (t) may be operator valued functions. We also note that in the Ito calculus
the chain rule is modified according to [3]

d(A()B(t)) = dA(t)B(t) + A(t)dB(t) + dA(t)dB(t) (13)

The final term must be included to ensure a correct expansion to linear order in the time
increment.

We need now to specify how the free field is coupled to a local electronic degree of
freedom described by the Fermi annihilation and creation operators ¢,cf. This degree of
freedom could for example be a quasi bound state of a single quantum dot or donor atom.
This interaction will be taken to be linear in the system operators. The usual tunnelling
interaction is then specified by the Hamiltonian,

H; = ngalc + g;ach (14)
k

Such a coupling is the usual way to describe tunnel coupling between a reservoir and a
localised degree of freedom [14] We now anticipate the Markov approximation by assuming
that around the reference energy, the coupling constants, gy are very slowly varying functions
of k and replace them by a constant, ,/. For further discussion see [2].

Hy = \/y(cal(t) + cla(t)) (15)

The time evolution operator over the time increment dt is given by
U(dt) = exp{—i\/7(cdAT(t) + c'dA(t))} (16)
This enables us to define the ’output’ field stochastic process as
dAou(t) = Ut(dt)dA(#)U(dt) (17)

This equation suggests that we regard dA(t) as the ’input’ field stochastic process dA(t) =
dA;,(t). It is then easy to see that

dAour(t) = dAin(t) — iy/F(2f (wo) — 1)e(t)dt (18)

This expression may be written directly in terms of the reservoir field operators as

Goua(t) = @in(t) = i/F(2f (o) — L)e(t) (19)

This expression can be used to establish a connection between input and output fields once
the dynamics of the local system operators is given. In the frequency (energy) domain the
resulting expression is equivalent to the scattering matrix in the method of Buttiker.

The dynamics of the local system is specified by a quantum stochastic differential equa-
tion, for example



de(t) = Ut(dt)e(t)U (dt) — c(t) (20)
= —Ze(t) +iyAdH(?) (21)

where the noise operators are
dH(t) = dA(t)(c(t)c!(t) — '()e(t)) (22)

It is at this point that we recognise the difference between Fermi and Bose quantum stochas-
tic calculus. In the Bose case the noise operator does not depend on system operators, and
is in fact simply given by dA(t), as the commutator in Eq 22 is unity. In the Fermi case
however the noise depends on the system operators. This will ensure that the dynamics of
the local system reflects Fermi statistics, in particular it will ensure that the stochastic dif-
ferential equation for the number operator n.(t) = cf(t)e(t) takes the correct form. Despite
the fact that the noise operators depend on the system operators, the average over quadratic
combinations do not depend on the system. This is because the system operator appearing
in Eq(22) has only two eigenvlaues £1, which when squared is unity. Thus we find

dHT(t)dH (t) = dAT(t)dA(2) (23)

The quantum stochastic differential equation for the system number operator is given by
dno(t) = ' ()de(t) + det(t)e(t) + det(t)de(t) (24)

= —7(ne(t) — flwo))dt + dN(2) (25)

where the noise operator is
dN(t) = i\/;f(c(t)TdH(t) - c(t)a’HT(t)) (26)

Equation 25 correctly reflects the Fermi statistics of the local system. If the Ito correction
term, dc'(t)de(t) had been neglected, this would not have occurred. When this term is
evaluated, the dependence of the noise operators on system variables in Eq. 22 is crucial.
As a result the average occupation of the local system in the steady state is given correctly
by

(ne) = f(wo) (27)

as would be expected for a Fermi particle.
We can also obtain the master equation for the local system by

dp(t) = Tracer [U(d)W(t)U(dt) — W(t)] (28)

where W(t) is the state of the total system (localised system and the external fields), and
Trace refers to a trace over external field variables. Using the noise moments we find,

908 _ _ilh, p(6) + 1 f(wo) 2t pe — cctolt) — plt)ech) &)

dt
+4(1 = Fwo))(2epet — clep(t) — p(t)cle)

It is an easy matter to verify that the mean occupation of the dot (n.(t)) obeys the same
equation that results from taking moments of both sides of Eq. 25. The master equa-
tion represents the Schrodinger picture dynamics, while the quantum stochastic differential
represents the Heisenberg picture.



ITI. QUANTUM STOCHASTIC DYNAMICS OF A SINGLE QUANTUM DOT

The system we will discuss in this paper is a standard mesoscopic configuration [15] in
which ohmic contacts couple to propagating channels to either side of a quantum dot (see
figure 1). We suppose that there is a single quasi bound state between two tunnel barriers.
Spin will be ignored. It can easily be included as another state in the dot. We will also
ignore Coulomb blockade, which for a single bound state simply leads to a shift in the energy
of the state. We also take the so called ’zero-temperature’ limit, and assume that the bound
state energy is below the effective Fermi energy in the source (L, in figure 1) and above the
effective Fermi energy in the drain (R in figure 1). The ohmic contact at the left of the
dot is assumed to be a perfect emitter while the chmic contact at the right of the dot is a
perfect absorber. This ensures that both reservoirs will remain close to thermal equilibrium
at all times, provided they are connected to an external EMF. These assumptions will be
important when we consider the measured quantities in this system.

We need now to specify how the free fields in the left and right channels are coupled to a
local electronic degree of freedom described by the Fermi annihilation and creation operators
¢,ct. This degree of freedom could for example be a quasi bound state of a single quantum
dot or donor atom. This interaction will be taken to be linear in the system operators.
The usual tunnelling interaction, anticipating the Markov approximation as in the previous
section, is then specified by the Hamiltonian,

Hy = Ar(eal(t) + clas(t)) + vAr(cak(t) + clan(?)) (30)

where ., yr refers to the tunnelling rate across the left and right barrier respectively, while
ar(t),ar(t) are the Fermi fields in the left channel and right channel respectively. The
corresponding unitary evolution operator for a time increment dt is

U(dt) = exp (—iyAL(cdAl, + cldAL) — iy/r(cd AR + c'dAR)) (31)

where dAf(t),dAg(t) are the quantum stochastic processes in the left and right channels
respectively. The input/output relations are then found to be

dAL out(t) = dAL ia(t) — iy /ype(t)dt (32)
dARout(t) = dARin(t) + iy/Yre(t)dt (33)

with the following averages for the noise

(dAL(8)dAL(t)) = dt (34)
(dAR(t)dAL()) = dt (35)

All other averages are zero. Alternatively we may write the input-output relations as

G'L,out(t) = dﬂ‘.L,m(f) —1 '\/Lc(t) (36)
aa0ut(t) = ar,in(t) + iv/RE(E) (37)

The quantum stochastic differential equation for the destruction operator in the dot is,



ae(t) = =PI oyt 4 i L (1) + i A HR () (38)
The quantum stochastic differential equation for the number operator on the dot is
dne(t) = (1 — ne(t))dt — yan (t)dt + dNL(t) + dNg(t) . (39)
If we take moments of both sides of Eq.39 we find,

dnr

dt

The first term corresponds to injection from the source onto the dot. This term is zero if
the dot is already occupied and 7(t) = 1. The second term correspond to emission from the
dot through the right barrier into the drain. The steady state occupation number on the
dot is

Pl = _w (41)
YL + YR

The master equation for the dot is found to be

d
d_’: =Lp = %L" (2c1pc —cclp — pccT) (42)
Cy %‘2 (2cpcf —clep — chC)

This equation was previously derived by more direct methods in reference [11].

IV. WHAT IS MEASURED 7

It is at this point we need to make contact with measurable quantities. In the case of
electron transport, the measurable quantities reduce to current /(¢) and voltage V'(t). The
measurement results are a time series of currents and voltages which exhibit both systematic
and stochastic components. Thus /(¢) and voltage V() are classical conditional stochastic
processes, conditioned by the underlying quantum dynamics of the quasi bound state on the
dot. The reservoirs in the ohmic contacts play a key role in defining the measured quantities
and ensuring that they are ultimately classical stochastic processes. Transport through the
dot results in charge fluctuations in either the left or the right channels. These fluctuations
decay extremely rapidly, ensuring that the channels remain in thermal equilibrium with the
respective ohmic contacts. For this to be possible charge must be able to flow into and out
of the channels from an external circuit. We assume that a constant potential difference
is maintained between the two reservoirs either side of the dot. While the entire system is
clearly not in thermal equilibrium, we assume that the left and right channels are themselves
close to thermal equilibrium and can each be specified by a separate chemical potential pf,
and pg, and these are held constant by a external voltage source, V.

If a single electron tunnels out of the dot into the right channel between time ¢ and
t+dt, its energy is momentarily above the Fermi energy. This electron scatters very strongly
from the electrons in that channel and propagates into the right ohmic contact where it is

7



perfectly absorbed. The net effect is a small current pulse, dI;(¢) in the external circuit.
This is completely analogous to perfect photodetection: a photon emitted from a cavity will
be detected with certainty by a detector which is a perfect absorber. Likewise when an
electron in the right channel tunnels onto the dot, there is a rapid relaxation of this unfilled
state back to thermal equilibrium as an electron is emitted from the right ohmic contact
into the depleted channel. This again results in a current pulse in the circuit connected to
the ohmic contacts. The energy gained when one electron is emitted from the left reservoir
is, by definition, the chemical potential of that reservoir, pz while the energy lost when
one electron is absorbed into the right reservoir is pug. The net energy transferred between
reservoirs is sy, —pp. This energy is supplied by the external EMF, V and thus yy —pr = V.
It should not be supposed that the electron injected from the left contact and emitted into
the right contact have the same energy as the energy of an electron on the dot. In fact any
electron energy at all will suffice to restore thermal equilibrium in the left and right leads.
If an electron is emitted into the left channel between times ¢ and ¢+ d¢, the (unnormalised)
sate of that channel is pz,o(t + dt) = a} op(t)az,0dt. The probability of this event occurring
is simply the normalisation constant and is p.(t) = tr(a}gop(t)al,,o)dt = (aL!o(t)aTL'o(t)).
That is to say the probability of emission of electrons into the left channel is determined
by the anti normally ordered number flux operator in the left channel. A similar argument
indicates that the probability of absorption of an electron in the right ohmic contact is
given by the mean of the normally ordered number flux operator in the right most channel,
pa(t) = (a}%’o(t)aglo(t» . This is precisely analogous to perfect photodetection {rom an
optical source [16]. Both the emission into the left channel and absorption from the right
channel are conditional point processes, conditioned on the quantum state of the quasi bound
state on the dot.

On average of course the same current flows in both reservoirs, however as the current is
stochastic it is made up of contributions from pulses in each lead, which do not necessarily
occur at the same time. Indeed they are necessarily separated in time by a degree depending
on the life time of the quasi bound state in the dot. In mesoscopic devices however current
in measured locally in each lead, thus we can consider either the current in the left lead,
I1(t) or the current in the right lead Ig(t) and correlations between them. The current that
flows in the right lead is simply given by the probability per unit time that an electron in
that channel is absorbed by the perfect absorber that is the right Ohmic contact. Thus

E(Ix(t)) = e{ako(t)arol(t)) (43)

The average current that flows in the left lead is given by the average probability per unit
time that an electron is emitted by the perfect emitter that is the left Ohmic contact.

E(IL(t)) = elas,o(t)al,o(t)) (44)

Note that the average on the left hand side is an average of a classical stochastic process,
while the average on the right is of a quantum stochastic process. We may now substitute
the relationship between the output fields, the input fields and the operator for the local
state, Eqs(37,38 ). The average currents are then found to be

E(I(t)) = evo(l — {ne(?))) (45)
E(Ir(t)) = evr(nc(t)) (46)

8



In the stationary state both currents are equal and given by
EYLYR
IL.oo = ]R,oo = % (47)

where v = v, + Vr.
The stationary two time correlation matrix is given by

Gap(7) = B(Is(t + 1), Ip(t))1mc0 (48)

and E(X,Y) = E(XY) — E(X)E(Y). The quantity E(l,(t + 7)Is(t) is determined by the
appropriately ordered two time correlation function for the quantum fields in the channels.
As both emission and absorption are point processes we find,

E(Ii(t + m)11(t) = eX(eno(t)el o ())d(r) + eXaro()ar,o(t + T)aho(t + T)afo(t))r>0  (49)
E(Ig(t+7)Ig(t)) = e"’(aR,o(t)TaR,o(t))J(T) + eZ(aL,O(t)aL’O(t + 1)aro(t + 7)aro(t))r>o0 (50)
E(Ir(t + 7)I1(t)) = (aho(t + 7)ar(t + T)ar,o(t)al o(1)) (51)
E(Io(t +7)Ir(t)) = (aro(t + 7)al o(t + T)ak o(t)aro(t)) (52)

Using equations 37 and 38, the steady state (¢ — oo) field correlation functions may be
expressed solely in terms of the correlation functions for the quasibound state as

(a0(t)ar,o(t +7)al ot + 7)ol o(2))r50 = 12T (ccte chpuse) (53)
(C"}z,o(t)ﬂ;a,o(t + 7)aro(t + T)aro(t))rso = YRTr (Cfceﬁhcﬂmcf) (54)
(ako(t + Tar(t + )aro(t)alo(t)) = 1rYLTr (ctee™ cfpocc) (55)
(ar0(t+7)al ot + T)ako()aro(t)) = 1ryaTr (cc'e“ cpece’) (56)

where p., is the steady state solution to the master equation, Eq 43 for the quasi bound
state on the dot.
Upon solving the master equation we may evaluate each correlation function to give;

2.2
E(IL(t + 1), I1(t) = E(Ip(t + 1), Ir(t) = ezw(;(ﬂ _ ez’YH;YL — -
L v
3
B+ ) = o
3
E(IL(t + T)-, IR(t) == ez%e‘“"ﬂ' (59)

where v = v, + vr. The power spectrum of the noise in either the left or the right lead is
then given by the Fourier transform of the current correlation function in either lead

: 2YRYL
Se(w) = Sp(w) = el (1 - +w9) (60)
Note that at zero frequency and symmetric rates (yg = 1) the current noise is suppressed
by a factor of 0.5 over shot noise. This is the same as that obtained by Buttiker [10], and
is equivalent to that obtained in reference [11]. Note however that in that paper it was
assumed, following earlier work [17], that the measured current is a superposition of the two
Poisson processes of emission and absorption. This however is not the case for mesoscopic
measurements. As has been stressed by Buttiker, the current is measured in one lead at a
time and thus the correct expression for the current noise is that given above.

9



V. DISCUSSION AND CONCLUSION

In this paper we have shown an equivalence between the approach of Buttiker and the
approach of quantum stochastic calculus to the current through mesoscopic systems. To
illustrate the equivalence we have discussed the current fluctuations in two terminal meso-
scopic circuit with two tunnel barriers containing a single quasi bound state on the well.
The method enables us to focus on either the incoming and outgoing Fermi fields in the
leads, or on the irreversible dynamics of the well state itself. We have of course made the
Markov approximation in order to obtain the quantum Langevin equations for the system.
The Markov assumption is equivalent to the assumption of the Breit-Wigner (Lorentzian)
assumption for the transmission coefficients though a double barrier structure, and is dis-
cussed in some detail in reference [11].

We believe there are two advantages in our approach. Iirstly it is useful to be able to
refer to the quantum irreversible dynamics of the quasi bound states on local systems defined
by barriers, as well as the input and output Fermi fields. This is particularly important in
coherently coupled quasibound states. This is essential for recent condensed matter schemes
for quantum computation, where the focus is not so much on the properties of the external,
classical currents but rather on the dynamics of the local systems themselves. Secondly, our
method parallels a similar approach to strongly coupled field modes in quantum optics, thus
suggesting useful directions for future work. We mention one such direction. In quantum
optics the method of quantum trajectories [18] enables a description to be given of quantum
limited measurement [19], quantum control (feedback and feed forward) [20], and cascaded
local systems (irreversible but directional coupling) [21]. As mesoscopic technology advances
these topics will become increasingly important. The presentation in this paper shows how
the quantum stochastic methods of quantum optics may be taken over to Fermi systems.
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FIGURES

FIG. 1. Schematic representation of tunneling through a single quantum dot.
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