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Simulating nonlinear spin models in an ion trap
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We show how a conditional displacement of the vibrational
mode of trapped ions can be used to simulate nonlinear col-
lective and interacting spin systems including nonlinear tops
and Ising models { a universal two qubit gate), independent
of the vibrational state of the ion. Thus cooling to the vibra-
tional ground state is unnecessary provided the heating rate
is not too large.
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One of the paths leading to the current interest in
quantum computation begins with attempts to answer
Feynman’s question [l]: can quantum physics be effi-
ciently simulated on a classical computer? It is gener-
ally believed that the answer is no, although there is no
explicit proof of this conjecture. It then follows that a
computer operating entirely by quantum means could be
more efficient than a classical computer. Qur belief in
this conjecture stems from a number of algorithms, such
as Shor’s factorisation algorithm [2], which appear to be
substantially (even exponentially) more efficient than the
classical algorithms. A number of schemes have now been
proposed for a quantum computer, and some have been
implemented in a very limited way. What kinds of simu-
lations might these schemes enable? A number of inves-
tigators have attempted to answer this question [3-7]. In
this paper we consider this question in the context of the
ion trap quantum computer model and show that there is
a class of nonlinear collective and inferacting spin models
that can be simulated with current technology.

Nonlinear collective and interacting spin models have
long endured as tractable, nonlinear quantum models
with wide ranging relevance. Such models have appeared
in nuclear physics [8], laser physics [9], condensed mat-
ter physics [10] and of course as a theoretical laboratory
to investigate aspects of nonlinear field theories [11]. In
many cases however the match between model and ex-
periment is only qualitative. In this paper I will show
how some of these models may be directly simulated on
a linear ion trap with individual ion addressing as in the
quantum computation architecture.

The interaction Hamiltonian for N ions interacting
with the centre of mass vibrational mode can be con-
trolled by using different kinds of Raman laser pulses.
A considerable variety of interactions has already been
achieved or proposed [12-14]. Consider first the simplest

interaction that does not change the vibrational mode of
the ions. Each ion is assumeds to be driven by a resonant
laser field which couples two states, the ground state |g)
and an excited state |e). The interaction Hamiltonian is
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where Q; is the effective Rabi frequency at the i’th ion
and we have assumed the dipole and rotating wave ap-
proximation as usual. The raising and lowering operators
for each ion are defined by o_ = |g){e| and oy = |e){g|-
If we now assume that each ion is driven by an identical
field and chose the phase appropriately, the interaction
may be written as

Hp = kQJy (2)

where we have used the definition of the collective spin
operators,
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The interaction Hamiltonian in Eq 2 corresponds to a
single collective spin of value j = N/2 precessing around
the fy direction due to an applied field. By choosing
the driving field on each ion to be the same we have
imposed a permutation symmetry in the ions reducing
the dimension of the Hilbert space from 2V to 2N 4 1.
The eigenstates of J., may be taken as a basis in this
reduced Hilbert space. In ion trap quantum computers
it is more usual to designate the electronic states with a
binary number as |g) = |0), |e) = |1). The product basis
for all N ions is then specified by a single binary string, or
the corresponding integer code if the lons can be ordered.
Each eigenstate, [j, m);, of J. is a degenerate eigenstate
of the Hamming weight operator ( the sum of the num-
ber of ones in a string) on the binary strings labelling the



product basis states in the 2% dimensional Hilbert space
of all possible binary strings of length N. Collective spin
models of this kind were considered many decades ago
in quantum optics [9] and are sometimes called Dicke
models after the early work on superradiance of Dicke
[15]. In much of that work however the collective spin
underwent an irreversible decay. In the case of an ion
trap model however we can neglect such decays due to
the long lifetimes of the excited states. However when
the electronic and vibrational motion is coupled heating
of the vibrational centre-of-mass mode can induce irre-
versible dynarnics in the collective spin variables.

The natural variable to measure is J, as a direct de-
termination of the state of each ion via shelving tech-
nigues will give such a measurement. These measure-
ments are highly efficient, approaching ideal projective
measurements. The result of the measurement is a bi-
nary string which is an eigenstate of J,. Repeating such
measurements it is possible to construct the distribution
for J, and corresponding averages. Other components
may also be measured by first using a collective rotation
of the state of the ions.

We now show how to realise nonlinear Hamiltonians
using N trapped ions. By appropriate choice of Raman
lasers it is possible to realise the conditional displacement
operator for the i’th ion [16,12]

H = —ih{eyat — afa)ol) (7)

If the ion is in the excited (ground) state this Hamiltonian
displaces the vibrational mode by a complex amplitude o
(—a). In the case of N ions with each driven by identical
Raman lasers, the total Hamiltonian is

H = —ih(aa! — a*a)J, (8)

By an appropriate choice of Raman laser pulse phases
we can then implement the following sequence of unitary
transformations

UNL - eixx)?j‘ eilcpﬁj,e—in,)?j, ei:cppf,, (9)
where X = (a + a!)/v2, P = —i(a — a')/V/2. Noting
that

em,f’]j;);-e—m,,ﬁjz =X+ fcpjz (10)
it is easy to see that
Ung = e~ (11)

where f = k.4, which is the unitary transformation gen-
erated by a nonlinear top Hamiltonian describing preces-
sion around the J, axis at a rate dependant on the z
component of angular momentum. Such nonlinear tops
have appeared in collective nuclear models [8] and form
the basis of a well known quantum chaotic system [19].

It should be noted that the transformation in Eq(11)
contains no operators that act on the vibrational state.
1t is thus completely independent of the vibrational state
and it does not matter if the vibrational state is cooled
to the ground state or not. However Eq(11) only holds if
the heating of the vibrational mode can be neglected over
the time it takes to apply the conditional displacement
operators. We discuss below what this implies for current
experiments.

In itself the unitary transformation in Eq (11) can gen-
erate interesting states. For example if we begin with all
the ions in the ground state so that the collective spin
state is initially |j, —j), and apply laser pulses to each
electronic transition according to the Hamiltonian in Eq
(2) for a time T such that QT = w/2 the collective spin
state is just the J, eigenstate |j, —7)5. If we now apply
the nonlinear unitary transformation in Eq (11) so that
6 = m/2 we find that the system evolves to the highly
entangled state
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Such states have been comsidered by Bollinger et al.
[17] in the context of high precision frequency measure-
ments,and also by Sanders [18]. They exhibit interference
fringes for measurements of J,. As noted above a mea-
surement of J, is easily made simply by reading out the
state of each ion using highly efficient fluorescence shelv-
ing techniques. This particular nonlinear model is a well
known system for studying quantum chaos, as we now
discuss.

The nonlinear top model was introduced by Haake
[19,20] as a system that could exhibit chaos in the clas-
sical limit on a compact phase space, and which could
be treated quantum mechanically with a finite Hilbert
space. This removed the necessity of truncating the
Hilbert space and the possibility of thereby introducing
spurious quantum features. The nonlinear top is defined
by the collective spin Hamiltonian,

[+) = Jy=de + (=104, (12)
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where 7 is the duration between kicks, § = (J;, Jy, J2)
is the angular momentum vector, and J = j(j + 1) is a
constant of the motion.

As the Hamiltonian is time periodic the appropriate
quantum description is via the Floquet operator

_ .3 T s
U =exp (—zz—sz) exp (—zin) , (14)

which takes a state from just before one kick to just be-
fore the next, i.e., [¢) — U |¢), where J, and J, are the
usual angular momentum operators, and j is the angu-
lar momentumn quanturn number. The first exponential,



Up = exp (—i%jzj, describes the precession about the

Z
z-axis, and the second, Ux = exp (—i%jy), describes
the kick.

The classical dynamics can be reduced to a two dimen-
sional map of points on a sphere of radius j [20], and the
angular momentum vector can be parameterised in polar
coordinates as

J = j(sin © cos @, sin O sin &, cos B). (15)

The first term in the Hamiltonian (13) describes a non-
linear precession of the top about the z-axis, and the sec-
ond term describes periodic kicks around the y-axis. The
classical map for p = n/2 and k = 3 has a mixed phase
space with periodic elliptical fixed points and chaotic re-
glons.

It is now clear that this model can be simulated by
the sequence of pulses in Eq (11) with appropriate values
for the pulse area, together with a single linear rotation.
This presents the possibility of directly testing a num-
ber of ideas in the area of quantum chaos, particularly
the idea of hypersensitivity to perturbation introduced
by Schack and Caves [21]. Of particular interest here is
the ability to very precisely simulate the measurement
induced hypersensitivity discussed in [22]. In that pa-
per the kicked top was subjected to a readout using a
single spin that could be prepared in a variety of states.
The interaction between the top and the readout spin is
described by

Ur =exp (fz'p.]ya‘(zﬂ)) ; (16)

where we regard one ion as set aside to do the readout and
label it with a superseript. It is relatively straight for-
ward to generate this interaction via the pulse sequence
of conditional phase shifts

Ung = ei'n,,){'agm Einpﬁagm E-:’ruf(.f, ein,,f’ci‘q) (17)
with g = kzkp. It is now possible to consider a long
sequence of measurements made at the end of each non-
linear kick and record the resulting binary strings of mea-
surement results.

Initial states of the kicked top can be easily be prepared
as coherent angular momentum states by appropriate lin-
ear rotations. In the basis of orthonormal jz eigenstates,
and J2|j, m) = j(j + 1) |j,m). the spin coherent states
can be written as a rotation of the collective ground state
[19,23] through the spherical polar angles (f, ¢),

[¥) = exp [zB(fx siné—jycosqﬁ))] |4, =3} (18)
where v = ¢/? tan (%) This can be achieved by identi-
cal, appropriately phased pulses on each ion separately.
Initial states localised in either the regular or chaotic

regions of the classical phase space may thus be easily
prepared.

Using a sequence of conditional displacement opera-
tors that does distinguish different ions we can simulate
various interacting spin models. As interacting spins are
required for general quantum logic gates, these models
may be seen as a way to perform quantum logical oper-
ations without first cooling the ions to the ground state
of some collective vibrational mode.

Suppose for example we wish to simulate the interac-
tion of two spins with the Hamiltonian

Hin: = hyoltgl?) (19)
The required pulse sequence is
= Bim,}fag” ein,ﬁaia)e—imz.’iaineinp}?ai” (20)
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This transformation may be used together with sin-
gle spin rotations to simulate a two spin transformation
that is one of the universal two qubit gates for quantum
computation. For example the controlled phase shift op-
eration

U g e—inle)i(el@le)alel (21)
may be realised with y = 7 as
Usp = e 8001500, (22)

Once again this transformation does not depend on the
vibrational state and so long as it is applied faster than
the heating rate of the collective vibrational mode it can
describe the effective interaction between two qubits in-
dependent of the vibrational mode.

We have proposed a scheme, based on conditional dis-
placements of a collective vibrational mode, to simulate a
variety of nonlinear spin models using a linear ion trap in
the quantum computing architecture and which does not
require that the collective vibrational mode be cooled to
the ground state. However the scheme does require that
the heating of the collective vibrational mode is negligi-
ble over the time of the application of the Raman condi-
tional displacement pulses. It does not matter that the
ion heats up between pulses. If the pulses were applied
for times comparable to the heating times the pulse se-
quences described above would not be defined by a prod-
uct of unitary transflormations but rather by the com-
pletely positive maps which include the unitary part as
well as the nonunitary heating part. Such maps provide
a means to test various thermodynamic limits of nonlin-
ear spin models and will be discussed in a future paper.
In current experiments the heating time is estimated to
be of the order of 1 ms, which is much shorter than the
theoretically expected values that are as long as seconds
[12]. The source of this heating is unclear but efforts



are under way to eliminate it, so we can expect heat-
ing times to eventually be sufficiently long to ignore. In
current experiments however the sequence of conditional
displacements would need to be applied on time scales of
less than 1 ms. This is achievable using Raman pulses.
We thus conclude that simple collective and interacting
spin models with a few spins are within reach of current
ion trap quantum computer experiments.
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