Negative curvature and rigidity for von Neumann algebras

Approximation, deformation, quasification

Isaac Newton Institute, Cambridge, 8-12 May 2017

Stefaan Vaes*

* Supported by ERC Consolidator Grant 614195

Rigidity theorems

What type of rigidity?

Theorems where

- weakly isomorphic structures are shown to be strongly isomorphic ;
- coarse structure is shown to determine much finer structure.

Examples:

- ► quasi-isometry of groups vs. virtual isomorphism of groups,
- ► homotopy equivalence vs. homeomorphism.

Our theme: von Neumann algebras.

- ► Discrete group Γ vs. group von Neumann algebra $L(\Gamma)$.
- Group action $\Gamma \curvearrowright (X, \mu)$ vs. crossed product $L^{\infty}(X) \rtimes \Gamma$.

Method: Popa's deformation/rigidity theory.

Focus today: usage of negative curvature phenomena.

Definition

A von Neumann algebra M is a weakly closed *-subalgebra of $B(\mathcal{H})$, the bounded operators on a Hilbert space.

• Weak topology: $T_i \to T$ iff $\langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$.

Example: group von Neumann algebra $L(\Gamma)$.

- Left regular representation: $\lambda : \Gamma \to \mathcal{U}(\ell^2(\Gamma)) : \lambda_g \delta_h = \delta_{gh}$.
- Then, $L(\Gamma)$ is the weak closure of $\mathbb{C}[\Gamma] = \operatorname{span}\{\lambda_g \mid g \in \Gamma\}$.

Rigidity question: which information on Γ can be retrieved from $L(\Gamma)$? **Connes' theorem:** all amenable icc groups Γ have isomorphic $L(\Gamma)$. **But:** amenability, property (T), Haagerup property,... are invariants of $L(\Gamma)$.

Ozawa's solidity theorem

Some terminology first:

- ► a II₁ factor is a von Neumann algebra M with trivial center and a tracial state $\tau : M \to \mathbb{C}$, i.e. $\tau(xy) = \tau(yx)$.
- $L(\Gamma)$ is a II₁ factor for any icc discrete group Γ .

Theorem (Ozawa, 2003)

For every icc **hyperbolic** group Γ , the II₁ factor $M = L(\Gamma)$ is **solid** : whenever $A \subset M$ is not "locally trivial", we have that $A' \cap M$ is amenable.

- ▶ Notation: $A' \cap M = \{x \in M \mid ax = xa \text{ for all } a \in A\}.$
- ▶ Locally trivial: there is a projection $p \in A$ with $pAp = \mathbb{C}p$.
- ► Consequence: *M* is **prime**. We cannot write $M \cong M_1 \overline{\otimes} M_2$. Note: $L(\Gamma_1 \times \Gamma_2) \cong L(\Gamma_1) \overline{\otimes} L(\Gamma_2)$.

Why hyperbolic groups: Ozawa's class $\boldsymbol{\$}$

Trivial observation: hyperbolicity leaves no room to commute.

Ozawa's class $\ensuremath{\mathbb{S}}$

We say that $\ensuremath{\mathsf{\Gamma}}$ belongs to class $\ensuremath{\mathbb{S}}$ if

- the left-right action Γ × Γ Γ can be compactified to an action
 Γ × Γ K by homeomorphisms of a compact space K
 (with Γ ⊂ K densely),
- ► such that the right action $\{e\} \times \Gamma \frown K$ is trivial on the **boundary** $K \setminus \Gamma$,
- and such that the left action $\Gamma \times \{e\} \curvearrowright K$ is **amenable**.

If Γ is hyperbolic with Gromov boundary $\partial\Gamma$, take $K = \Gamma \cup \partial\Gamma$. Negative curvature: the amenability of the boundary action $\Gamma \curvearrowright K$.

Theorem (Ozawa, 2011)

A discrete group Γ belongs to class ${\mathbb S}$ if and only if

- ► **Γ** is **exact** (a technical condition that is "always" satisfied),
- ► there exists a proper $c : \Gamma \to \ell^2(\Gamma)$ such that for every $g \in \Gamma$, $\sup_{h \in \Gamma} \|c(gh) - \lambda_g c(h)\|_2 < \infty$.

Quasi-cocycle: $\sup_{g,h\in\Gamma} \|c(gh) - c(g) - \lambda_g c(h)\|_2 < \infty$.

So, class $\ensuremath{\mathbb{S}}$ is intimately related to

- Thom's class of groups with a nontrivial quasi-cocycle $c : \Gamma \to \ell^2(\Gamma)$,
- Monod-Shalom's class where $H_b^2(\Gamma, \ell(\Gamma)) \neq \{0\}$,

with non-elementary hyperbolic groups being in the intersection of all.

Rigidity theorems

Recall: if Γ is nonamenable and in class S, then $L(\Gamma)$ is prime. This means: $L(\Gamma) \ncong M_1 \boxtimes M_2$.

Theorem (Ozawa-Popa, 2003)

If Γ_i and Λ_i are nonamenable groups in class S and

- $L(\Gamma_1 \times \cdots \times \Gamma_n) \cong L(\Lambda_1 \times \cdots \times \Lambda_m)$, then
- n = m and after reordering $L(\Gamma_i) \cong L(\Lambda_i)^{t_i}$.

Theorem (Chifan-de Santiago-Sinclair, 2015)

If Γ_i are nonelementary icc hyperbolic groups and $L(\Gamma_1 \times \cdots \times \Gamma_n) \cong L(\Lambda)$ for an **arbitrary** countable group Λ ,

then $\Lambda \cong \Lambda_1 \times \cdots \times \Lambda_n$ and $L(\Gamma_i) \cong L(\Lambda_i)^{t_i}$.

For this last theorem, assuming Γ_i in class S is not sufficient. This is discussed later.

Group measure space construction (Murray - von Neumann)

Data : a countable group Γ acting on a probability space (X, μ) , preserving μ .

Output : a tracial von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$,

- ▶ generated by a copy of $A = L^{\infty}(X)$ and unitaries $(u_g)_{g \in \Gamma}$,
- ► dense *-algebra of finite sums $\sum_{g} a_{g} u_{g}$ with $a_{g} \in A$,
- ► product $au_g bu_h = a\alpha_g(b) u_{gh}$ where $\alpha_g(a) = a(g^{-1} \cdot)$ for $a, b \in A$,
- trace $\tau(\sum a_g u_g) = \int_X a_e d\mu$.

Silly remark : $L(\Gamma) = L^{\infty}(\{*\}) \rtimes \Gamma$.

Example : Bernoulli action $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$. **Example :** $SL(n, \mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

Freeness, ergodicity and Cartan subalgebras

Given $\Gamma \curvearrowright (X, \mu)$, write $A = L^{\infty}(X)$. Then $A \rtimes \Gamma$ is a II₁ factor if

- the action is free : almost every $x \in X$ has trivial stabilizer ;
- ▶ the action is **ergodic** : all **Γ**-invariant functions are a.e. constant.

In that case, $A \subset A \rtimes \Gamma$ is a **Cartan subalgebra**.

A Cartan subalgebra $A \subset M$ is a maximal abelian subalgebra such that $\mathcal{N}_M(A) = \{ u \in \mathcal{U}(M) \mid uAu^* = A \}$ generates M.

Singer's theorem : the inclusion $A \subset A \rtimes \Gamma$ contains the same data as the **orbit equivalence relation** $\mathcal{R}(\Gamma \curvearrowright X) = \{(x, y) \mid x \in \Gamma \cdot y\}.$

If one can prove uniqueness of the Cartan subalgebra, then this equivalence relation can be recovered from the II₁ factor.

Absence / uniqueness of Cartan subalgebras

- ► (Voiculescu, 1995) The free group factors L(F_n) have no Cartan subalgebra. Method: free probability theory.
- (Ozawa, 2008) The group Γ = Z² ⋊ SL(2, Z) belongs to class S. Then, L(Z²) ⊂ L(Γ) is a Cartan subalgebra.

Conclusion: class S is not enough to prove absence of Cartan for $L(\Gamma)$ or uniqueness of Cartan for $L^{\infty}(X) \rtimes \Gamma$.

Theorem (Ozawa-Popa, 2007-2008)

Assume that Γ is nonamenable and that

- ► Γ admits a proper cocycle $c : \Gamma \to \ell^2(\Gamma)$, (strengthens class δ)
- ► **Γ** has the complete metric approximation property. (extra condition)

Then, $L(\Gamma)$ has no Cartan subalgebra.

If $\Gamma \curvearrowright (X, \mu)$ is free ergodic and **profinite**, then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$, up to unitary conjugacy.

About the Ozawa-Popa theorem, part 1

Unique Cartan in $L^{\infty}(X) \rtimes \Gamma$ for **profinite** actions of nonamenable Γ

- ► that admit a proper cocycle $c : \Gamma \to \ell^2(\Gamma)$, (strengthens class *S*)
- ► that have the complete metric approximation property. (extra condition)

Definition

A Fourier multiplier on Γ is a map $\varphi : \Gamma \to \mathbb{C}$ such that the multiplier $m_{\varphi} : L(\Gamma) \to L(\Gamma) : m_{\varphi}(u_g) = \varphi(g)u_g$ is completely bounded.

- ▶ Positive-definite functions are Fourier multipliers with $||m_{\varphi}||_{cb} = \varphi(e)$.
- ► Amenability: there exist finitely supported positive-definite $\varphi_n : \Gamma \to \mathbb{C}$ such that $\varphi_n \to 1$ pointwise.
- CMAP: there exist finitely supported Fourier multipliers φ_n : Γ → C such that φ_n → 1 pointwise and lim sup_n ||φ_n||_{cb} = 1.
- ▶ Weak amenability: there exist finitely supported Fourier multipliers $\varphi_n : \Gamma \to \mathbb{C}$ such that $\varphi_n \to 1$ pointwise and $\limsup_n \|\varphi_n\|_{cb} < \infty$.

Definition

A probability measure preserving (pmp) action $\Gamma \curvearrowright (X, \mu)$ is **profinite** if it is the inverse limit of a system of pmp actions $\Gamma \curvearrowright (X_n, \mu_n)$ where each X_n is a finite set.

- ► If Γ has CMAP and $\Gamma \curvearrowright (X, \mu)$ is profinite, then the von Neumann algebra $M = L^{\infty}(X) \rtimes \Gamma$ has CMAP.
- ► Ozawa-Popa, 2007: given a II₁ factor *M* with CMAP and given an amenable *A* ⊂ *M*, something happens.
- ► Ozawa, 2010: if G is weakly amenable and N < G is an amenable normal subgroup, then N admits a mean that is invariant under translation by N and under conjugation by G.
- Something similar in the context of A ⊂ M, yielding a N_M(A)-invariant mean "somewhere".

CMAP and weak amenability, Cowling's conjecture

- ► Groups with CMAP: free groups F_n, lattices in SO(n, 1) or SU(n, 1). Stable under direct products, free products and measure equivalence.
- Weakly amenable groups: lattices in Sp(n, 1), hyperbolic groups.
 Stable under direct products and measure equivalence.
 Open problem: stability under free products.

Haagerup property: existence of a proper isometric action of Γ on a Hilbert space.

Cowling's conjecture: Haagerup property iff CMAP.

- Direction \Rightarrow was disproved by CoStVa-OzPo using e.g. $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{F}_2$.
- Direction \leftarrow remains open.

Uniqueness of Cartan subalgebras

Theorem (Chifan-Sinclair, 2011)

Assume that

- ► **Γ** belongs to class S,
- ► **Γ** is weakly amenable, but nonamenable.

Then, $L(\Gamma)$ has no Cartan subalgebra.

If $\Gamma \curvearrowright (X, \mu)$ is free ergodic and **profinite**, then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$, up to unitary conjugacy.

 \checkmark Again, profiniteness ensures $L^{\infty}(X) \rtimes \Gamma$ weakly amenable.

Theorem (Popa-V, 2011-2012)

Exactly the same result, but for **arbitrary** free ergodic probability measure preserving actions $\Gamma \curvearrowright (X, \mu)$.

 \sim Weak amenability has to be exploited "relative to $L^{\infty}(X)$ ".

Corollary (Popa-V, 2011)

If $\mathbb{F}_n \curvearrowright X$ and $\mathbb{F}_m \curvearrowright Y$ are free ergodic pmp actions and if $L^{\infty}(X) \rtimes \mathbb{F}_n \cong L^{\infty}(Y) \rtimes \mathbb{F}_m$, then n = m.

- ▶ By uniqueness of Cartan, an isomorphism maps $L^{\infty}(X)$ onto $L^{\infty}(Y)$.
- ► It thus induces an **orbit equivalence** of the actions : isomorphism $\Delta : X \to Y$ with $\Delta(\mathbb{F}_n \cdot x) = \mathbb{F}_m \cdot \Delta(x)$ for a.e. $x \in X$.
- ► This implies that n = m by one of Gaboriau's invariants for countable equivalence relations : cost or the first L²-Betti number.

Note: it is wide open whether $L(\mathbb{F}_n) \cong L(\mathbb{F}_m)$ when $n \neq m$.

Cartan rigidity

Definition

A discrete group Γ is called **Cartan-rigid** if for all free ergodic pmp $\Gamma \curvearrowright (X, \mu)$, the crossed product $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy (namely, $L^{\infty}(X)$).

The following groups are Cartan-rigid:

- ► (Popa-V, 2012) nonamenable, weakly amenable groups in class S, in particular nonelementary hyperbolic groups,
- (Ioana, 2012) all free products $\Gamma_1 * \Gamma_2$ with $|\Gamma_1| \ge 2$ and $|\Gamma_2| \ge 3$.
- ► a "natural strengthening" of Cartan-rigidity is stable under extensions.

In principle: any property that "strongly excludes" normalish abelienish subgroups might imply Cartan-rigidity.

Open problem: is $SL(n, \mathbb{Z})$ Cartan-rigid for $n \ge 3$?

Crossed products with locally compact groups

- Weak amenability and Ozawa's class S are well defined for locally compact groups.
- All rank one connected simple Lie groups with finite center have these properties.
- Also: all groups that act properly on a tree, or that act properly on a hyperbolic graph.

Theorem (Brothier-Deprez-V, 2017)

Let *G* be a weakly amenable **locally compact** group in Ozawa's class *S*. Let $G \sim (X, \mu)$ be any free, ergodic, nonsingular action.

- Either the action is amenable in Zimmer's sense, equivalently $L^{\infty}(X) \rtimes G$ is amenable.
- Or $L^{\infty}(X) \rtimes G$ has a unique Cartan subalgebra.

Attention: $L^{\infty}(X)$ is not a Cartan subalgebra in $L^{\infty}(X) \rtimes G$.

• A Borel set $X_1 \subset X$ is called a **cross section**

if there exists a neighborhood $\mathcal{U} \subset G$ of e such that the map $\mathcal{U} \times X_1 \to X : (g, x) \mapsto g \cdot x$ is injective with non-null range.

- ► Then, R = {(x, x') ∈ X₁ × X₁ | x ∈ G · x'} is a countable nonsingular equivalence relation.
- ► Up to amplification, this produces the canonical Cartan subalgebra of $L^{\infty}(X) \rtimes G$.

Theorem (Brothier-Deprez-V, 2017)

Let G_1, G_2, H_1, H_2 all be weakly amenable, nonamenable and in class S. Assume unimodularity.

Let $G_1 \times G_2 \curvearrowright (X, \mu)$ and $H_1 \times H_2 \curvearrowright (Y, \eta)$ be free ergodic pmp actions. If $L^{\infty}(X) \rtimes (G_1 \times G_2) \cong L^{\infty}(Y) \rtimes H_1 \times H_2$, then the actions are **conjugate:** $\Delta : X \to Y$ and $\delta : G_1 \times G_2 \to H_1 \times H_2$ such

the actions are **conjugate:** $\Delta : X \to Y$ and $\delta : G_1 \times G_2 \to H_1 \times H_2$ such that $\Delta(g \cdot x) = \delta(g) \cdot \Delta(x)$.

Method:

- ► Uniqueness of the Cartan subalgebra produces an orbit equivalence.
- ► Orbit equivalence rigidity à la Monod-Shalom and Sako.