

THURSDAY, DECEMBER 11, 2014

MICROBIAL DYSBIOSIS – A PERSONAL CARE PERSPECTIVE.

BARRY MURPHY MICROBIOMICS UNILEVER

ABOUT UNILEVER

Unilever is one of the world's leading suppliers of fast-moving consumer goods.

Our products are sold in over 190 countries and used by 2 billion consumers every day.

OUR COMPASS STRATEGY

Our vision is to double the size of the business, whilst reducing our environmental footprint and increasing our positive social impact.

The Compass provides a blueprint for success by identifying what we must do to win share and grow volume in every category and country.

OUR €1 BILLION BRANDS

14 Unilever brands have a turnover of €1 billion or more

INTEGRATED R&D

- More than 6,000 R&D professionals
- Six key R&D sites delivering groundbreaking technologies: Bangalore (India), Colworth (UK), Port Sunlight (UK) Shanghai (China), Trumbull (US), and Vlaardingen (NL)
- 92 locations around the globe with R&D teams implementing innovations in countries and factories

UNDERSTANDING MICROBIAL COMMUNITIES

- Key to a number of Unilever categories.
- Microbial communities implicated in malodour, multiple skin conditions and caries.
- Heightened need to understand the roles of communities and of individual organisms.
- When trying to understand the community it is essential that we do not forget about the host!!!

MICROBIOMICS IN UNILEVER

- A move away from the traditional culture based methods.
- Evolved from 454 to Illumina sequencing.
- Efficient sampling methods for a number of category interests.
- Bioinformatic pipelines in place to process data for taxonomic classification
- While a shift to microbiomics over plates has its advantages there are disadvantages also.

IMPORTANCE OF MICROBIAL COMMUNITIES

- <u>Deodorants</u> –Major routes to malodour are VFA's, Odorous steroids and Thioalcohols.
- All are produced by the microbial breakdown of non odorous precursors found in human sweat.
- *Staphylococcus* and *Corynebacterium* implicated in axillary malodour.
- Host genetics important ABCC11 protein necessary for transport of AA linked thioalcohol precursors.

James *et al.*, 2012; Harker *et al.*, 2014

IMPORTANCE OF MICROBIAL COMMUNITIES

- <u>Oral Care</u> *Streptococcus mutans* strongly linked to caries formation.
- Importance of biofilms in oral care plaque.
- Production of acids and endotoxins in anaerobic conditions leads to numerous conditions
- *Porphyromonas gingivalis* known to be a "key stone" species in periodontitis.

Srinivasan et al., 2013, Adams et al., 2003

IMPORTANCE OF MICROBIAL COMMUNITIES

- <u>Scalp Care</u> Malassezia and *Staphylococcus* spp. implicated in dandruff.
- Outgrowth of particular species associated with dandruff but incomplete understanding.
- Host genetics are possibly important.
- Transcriptomics have been used to elucidate the mode of action of a number of actives.

MICROBIOMICS

VISUALISING MICROBIAL COMMUNITIES

Unilever

Orange/red – tongue Blue - plaque

Screenshot from MicrobiVis 2.0 - 21 Nov 2014 15:15 - Visualization author: Sara Johansson Fernstad Abundance (log) Prevalence (%) Classification Confidence Area Total cumulative abundance 4 4894943 0.9 onau 98.232 0.43* 60 9022 Plaque 0.24 28.57143 95.399 Eubal Camp Lachi Gente Haen Diali TM7 ActiRothia Trep Aggr BB 77 BB 77 BB 7 <u>ᠭᡊᡰᡊᡊᡊ</u>ᡰᡏᡅᡊᠮᡯᡗ᠓᠓ᡏᠷᡵᡅᢤ᠓ᡬᡅ᠓ᡊᠷᢛᢜ᠓ᡊᡊᡵᢆ᠋ᡨᡳᢘ᠗ᢥᡬᡅ᠓᠓ᡬᡞ᠓᠓

Much more complicated when whole cells are used in this context

How can we model these relationships? How much data do we need?

FLUX BALANCE ANALYSIS IN "PURE"

- Using RNA seq data to determine expression profiles in response to actives.
- Possible to use data to develop *in silico* constraint based models for further analysis.

- Numerous assumptions being made including that the population is homogenous.
- Also does not represent the true state of the organism *in vivo* with regard to community interactions.

SYSTEMS BIOLOGY: BOTTOM UP APPROACHES

- Cultivation approaches will result in dominant/less fastidious taxa being analysed. Must go beyond barcode analysis.
- Does not take into account interactions between community members (+ve/ve/neutral) and host/environment.
- Genome Scale Metabolic Reconstruction
- Will this form of analysis even be needed in the future. What is there v's what are they doing?

Computational models of communities

SYSTEMS BIOLOGY: TOP DOWN APPROACHES

- Can target whole community but lack of resolution.
- May allow the study of community interactions without knowing key members.
- Requires the integration of multiple datasets across species.
- Genomics leading the way but other techniques need to evolve further.
- Better datasets and databases are needed, Kyrpides et al., 2014.

WHAT WILL THE FUTURE HOLD?

- Multi-integration strategies (Weight)
- Predictive modelling can be used to evaluate intervention routes, quicker/cheaper/safer.
- Can predictive models be used to determine the effect of broad spectrum antimicrobials / hurdles.
- Community model where affect of removing a particular species is revealed. How will the remaining members adapt to fill the niche?

ACKNOWLEDGEMENTS

Port Sunlight

Sally Grimshaw Suzi Adams Joanne Hunt Jane Shaw Dave Arnold Sara Johansson Fernstad Noel Ruddock Mark Harker Svetlana Riazanskaia Janette Jones Clive Harding

Shanghai

Wentao Peng Tiger Huang Elaine Xu Mike Hoptroff

Colworth

Adrian Smith Jenny Pople Rebecca Ginger

University of Warwick

Chris Quince

University of Liverpool

Neil Hall John Kenny Christiane Hertz-Fowler

