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The ®3 measure 3/23

> The ®% measure v is given by the formal prescription

oAV (@) )
r(dp) =—m—ndg), V()= [ $(x)'dx,

where (1 is the Gaussian measure on ¥ "(A) with covariance (1-A)™1, ACR?3, 1 >0.

> The measure u is only supported on distributions of regularity (2 — d) /2 - «,
therefore the potential V is not well defined = need for renormalization.

> Regularization ¢ = pr* ¢ with pr — 0 as T — oo and introduction of counterterms

e—)LVT(¢T) . )
VT(d¢)=%—TM(d¢), VT(¢)=IA(¢ —GT¢ —br)dx > -Cp>—oco.

Problem: Control the limit 7' — oo of the family (v7) 7, describe the limiting object,

prove the properties needed for applications to QFT (e.g. Osterwalder—Schrader
axioms).



Related work 4/23

> Constructive QFT. ('"70-'80) Glimm, Jaffe. Nelson. Segal. Guerra, Rosen, Simon...
> (%) 4 Glimm ('69). Glimm, Jaffe. Feldman ('74), Y.M.Park ('75)
> (P%)gs Feldman, Osterwalder ('76). Magnen, Senéor ('76). Seiler, Simon ('76)

> Other constructions. Benfatto, Cassandro, Gallavotti, Nicolo, Olivieri, Presutti,
Scacciatelli ('80) Brydges, Frohlich, Sokal ('83) Battle, Federbush('83) Williamson
('87) Balaban ('83) Gawedzki, Kupiainen ('85) Watson ('89) Brydges, Dimock, Hurd
('95)

> Stochastic quantisation (d=2). Jona-Lasinio, P.K.Mitter ('85) Borkar, Chari,
S.K.Mitter ('88) Albeverio, Rockner ('91) Da Prato, Debussche ('03) Mourrat, Weber
('17) Rockner, R.Zhu, X.Zhu ('17)

> Stochastic quantisation (d=3). Hairer ('14) Kupiainen ('16) Catellier, Chouk ('17)
Mourrat, Weber ('17) Hairer, Mattingly ('18) R.Zhu, X.Zhu ('18) G, Hofmanova ('18)

> Tightness via dynamics (d=3). Albeverio, Kusuoka ('18) G, Hofmanova ('18)



Wilson's continuous renormalization group

> As T'— oo fluctuations at different scales adds up independently into (¢7) 7.

> Wilson ('83) Polchinski ('84) Brydges, Kennedy ('87) Brydges, Dimock, Hurd ('95)
Brydges, Slade, P.K.Mitter ('14)

> HJB. Formally the functional (effective potential)
Uy () =-log [ e V"WV (d¢p),  Up(0) =-logZr,

is solution to an Hamilton—Jacobi—Bellman equation (flow equation)

02 oU: () oU: (W)
S0y S oy |
This equation has to be studied in the space of functions over .’ (A ). Proper topology

not very clear, diffusion is highly degenerate, not many (none?) results from the
PDE point of view.

Ur(Wr) =Vr(Y).

atUt(¢)=—Qt[ Ut('%)"’

> We look for a stochastic control formulation of our problem which avoids the HJB
equation.



Variational problem 6/23

> Aim. Present a new proof of existence of the limit v, — v.

> Variational description. Gibbs measures satisfy a variational principle, vy is
the unique minimizer of the functional

Gr() =A [ Vr()dn($) +H@lw),  Gr(rr) =inf Gr(») =-logZr,

where H (v|n) = 0 is relative entropy.

The control of the limit 77 — v would follow from the ['—convergence of the family of
variational functionals (G7)7. Not clear how to obtain the needed estimates from

the expression of Gr.

> If the probability space is generated by a Brownian motion (B;); the variational
formula becomes more precise. P Wiener measure, X canonical process: if Q < P

then there exists (u;)s>o (Follmer drift) such that

?1% =exp ( fooo u.dX, —%fooo |u3|2ds) : H(QIP) = %EQ [ fooo |us|2d8] :



Boué—Dupuis formula 7/23

P Wiener measure, X canonical process.

Theorem. (Boué-Dupuis) We have the variational representation

_logE[e"®]= inf EP[F(X+ fo usds) +%fooo |us|2d3]'

ueH,

> Control problem (non—Markovian in general). Useful to get estimates and large
deviations.

> Pathwise point of view: we shift the attention from the value function of opti-
mization problem to the actual control needed to attain it. The problem becomes
amenable to standard functional analysis techniques.

> The controlled process X + [,uds features explicitly the “free” part X and more
regular drift part, similar to solutions to SDEs.

> Boué—Dupuis ('98), X. Zhang ('09), Lehec ('13), Ustiinel ('14).



An example 8/23

Let F(X) >0 be Lipshitz, i.e.

1
IF(X+1(uw))-F(X)|<LI(w)l=(o,17) <Lf0 luglds
Then

logE[eM @) =supEp| AF (X +1(u) _1 ooIuslzds
<Ep|AF(X)+L|I N s
<Ep|AFX) +LIL@)l=~7 [ lusl’ds

<Ep[AF(X) +3 [ @ALlugl~lus?) ds] < Ep[AF (X)] - 3L

1,
<—2RL?

We conclude that /' has Gaussian tails. Note that the only additional information
needed is Ep[|F (X)]|] < +oo.

Note that L can be random, i.e. L =L (X).



Enters time 9/23

> Fix A =T?3. Let X be a cylindrical Brownian motion on L?(A) and

e [LDax,  [lririempaoy

with D=|-A['% p,(D) =p(D/¢) and p: Ry — R, smooth, compactly supported and
with p(0) =1. Then

S S D 2
B 1Y (N Vs @)1= [ (2 T g s = <f, e g>,

s0 Yy~ pr#Ye ~pr# ¢ and (Y;), is a martingale.



Variational problem for the pressure 10/23

Boué—Dupuis formula:

_log Zp =—log E[e}Vr(¥r(X)] = in}t; EP[AVT(YT+ZT) +%f000 ||u3||_%zds]

ueli,
with

ugds.

Y(X+ fJuds) =Yr+Zr,  Zi=Lw= [, 22

> Regularity estimate.
T
sup 11,0l [ Iogli7ads.

0<t<T

So, at least heuristically,

1 pe 1
Be | AVp(Yr+Zn) +5 [ luslfds | = Ee| AVe (Yo + Zn) + 51V 20l |



Two dimensions 11/23

> When d =2 we can choose the renomalization constants such that

1 po
Or(w) =AVr (Yr+Zr) +5 [ luslfds = Vr(w) + Pr(w)

Vr(u)=A [, [Yrl*+4A [ [YF1Zr+6A [ [YF1ZF+4A [, [Yr]Z}+Or )

1 poo
Pr(u) =\ fAZ%+§ [ uglizds

goodY:erms

where [YF] are Wick polynomials of the (smooth) Gaussian field (Y7) 7. In particular
T — [Y#] is a martingale.

> Standard estimates show that [Yf] € C([0, o], €*(A)) almost surely with
LP(P) norms for all p > 1 and x < 0. Here €“(A) = BS (A) are Holder—Besov
spaces of regularity « € R.



Apriori estimates 12/23

Now the game is to control the terms without sign with the good terms. Let Wy =Y.

T
[47 [ IWR Zo| S4MTWE -1 Z il < C (8, @) PITWEDIE- + 6 [ luglZ:ds

61 [ [W123| <& C WL s+ 8 (1Zl3a-+ AN Zrls)

8

4N

[ WiZi| < CE (V) IWrli-se-co + 8 (12111512 + M Z1ls)

C

Therefore
—Kr+ (1-0)Pr(w) KE[VYr@w) +Prw) ] <Kr+ (1+6)Pr(u),

which implies

sup llog & 7| = sup

inf BEp[Vr(u) + @T(u)]| <0 (®).

ueH,



Three dimensions 13/23

> In three dimensions W, is more irregular and as a consequence we get uniform
estimates for the Wick powers only in the following spaces

[Wr] € €712 [WF] € €717%, [W7] € €~3/27,

> As a consequence we cannot hope to control the term [ N [W3]Zr,and 1) N [W2]Z% as
we did in two dimensions. Indeed we only have control of Z; in H! and L*.

> By perturbative considerations one expects further divergences (beyond Wick
ordering) therefore the functional to minimize is now

A
E [)L [ Wizr+ 5 [, Wizh+4A [ WTZ%]

~E[29r [, WeZn+ g0 [\ 23] + B[ A [ Zh+ 5 [ lulids |

where we introduced the convenient notations: W} :=4[W?], W7 := 12[W?].



A change of variables 14/23

> We aim to “complete the square” in order to eliminate the terms which we cannot
control. So we control the system which a drift of the form

usz_)LJs(Wg‘I' W32>'Zs) + Ws
Zy=dgu,=-AJ2(W2+W2>Z,) + K,

where w is a free control and J, = (D) ', (D).
> Paraproducts. fg=f<g+[fog+ [ >g. (Bony, Meyer ('80))
> The cost of such a drift is

2
[ hudPds =2 [ [ (T(WE+ W2 Z,))%ds

T 3, W2 ' LT 12
Ao [ (W WE>Z) Zods +5 [ lwlds



Mixed terms 15/23

> Integration by parts in the time variable allows to transform the mixed terms in
this cost to

-)LfOT [ W3+ W2>Z) Zds =2 [, (Wh+ WE>Zr)Zg
+A fOT fA (W2 + Wz > ZS) Z.ds + martingale

which after some analysis will cancel the terms

A (WiZp+ WEZ3)

modulo some nice remainder.



Renormalization 16/23

> The quadratic term generated by the new cost looks like (again after some inte-
gration by parts)

2 2
L[ Wi w2 Z)2s =% [T [ (W) %ds
2
[T [ (W2 > Z0))? - 27,221ds

+ 2 [0 [ [T (W) (o (W2 Z,)) 29, WiZlds + 2 [ [ 76l (Zo)>+2W.Z,]ds

where we have introduced an abitrary function (7;);. In this expression now the
first term is divergent but independend of the control, the two middle terms can be
shown to be finite provided the counterterm  is chosen appropriately and finally,
the last term is compensated by

2yr [ WrZr+r [, ZF.



Paracontrolled analysis 17/23

Let us see how does it work for
_Xopr 2 2 o 72
A= Efo fA [ (Js (Ws > Zs) ) - 2'YSZ3 ] dS-
> Commutator lemma. J,W2e € and Z,€ H'/?>~*

[, FeW2>Z))2= [ (Jo(WE>Z) o (J,(WE>Z,))

~ fA (JW2) o (J W2 Z2+ [ CI W2, I W, Zo)

eﬁr‘l’j
Therefore
A=i2fo [(J,W2) o (J,W2) —27,]Z2ds
9 Jo Jal s Wg s Wg 'Ys/ s
W2e2e G+
Similarly

Ws2°3 = (JSWE) © (JsWsz) - 2'}.’SWS S5 (g—l/Z—/c



Renormalized control problem 18/23

WT — (WTa W%, W{%, W2<>2, W32°3) e = (6—1/2—/4 X (g—l—fc % (6—3/2—/4 X €K % (6—1/2—/{
> We have shown that

T 1 poo ‘
“logZp(A) = inf B|AVr(Yr+Irw) +3 I, ||u3||_%2ds_
1

_ i i 4 o 2
= inf E|EpZM), K@)+ MZr O+ [, Ilds|

. inf Fr (1)
leH,

where Z=Z7 (1) e H?“ and K =K (I) € H'~¢ solve the integral equations
Z() ==A [ J2Wids + K, (1), Ki() ==A [ JEWE>Z,(1))ds + [ Julads.

> Estimates of the form

Er(Z (1), KANILCIWTIE + SNZr (D) lIfs+ OIK () lIzn-.



Variational setting. (X,/) canonical variables on C ([0, c0],20) x L% ([0, 00) x A)
X ={neP(C([0,],S) x L2 ([0,00) x A)) | w =Lawp (W, u) for some u € H,}.

> Then

—log%T(/l) = ianT(ILL) = inf:FT(,u)
peEX HEX

where, for 7€ [0, o],

Fr(u)=E, [ET(Z(Z),K(Z)) + MZr D lfacny + %fooo ||ls||]%2ds] .

> The choice of % is dictated by the fact that the family (F7), is now equicoercive,
namely that there exists a compact % C % such that

inf Fp(x) = inf Fp(x), for all T
XE€H xeX



I'—convergence 20/23

> Finally using the continuity of the map E and the lower semicontinuity of the L*
and entropy terms we establish

I'-lim Fr=F.

T — o0

Namely that

o For every sequence i/ — i in %
Feo () <liminfFr (1),
o For every 1 € % there exists a sequence 1/ — 1 in % such that
Fe(w) >limsupFr(u").
T

> A consequence of ['—convergence is the convergence of minima:

lim (-log%7) = lim inf Fp=min F..
T — oo T—oo o @



Variational representation of the ®4 measure 21/23

We obtain explicit variational formula for the limiting functional

s 4 1 poo 2
10g % (f) = Inf E| - [, fZeo() + B (2D, K1) + AlZoo Dlfacay +3 [ Mol |

defined for all f € .# (A) with

Zoo()=WmZr(f),  Zr(f) =TaB,[eW 7] = [l P00 (d ).

> The interest of this formula lies in the fact that the ®% measure is not absolutely
continuous wrt. the Gaussian free field, so an explicit description was lacking.

> The variational formula seems a promising way to extract informations from this
measure. E.g. large deviations, weak universality, pathwise properties, etc...



with
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Explicit form of the renormalized cost function

6
Eo(Z(D), K1) =E(ZK) =) 1Y

i=1

A (2) 2 A 2 2 2 [3]
EK: (WooaKooaKoo) +E{(WOO<KOO)KOO_A’{(WOO<WOO )Koo

0

Afow{ (W2>Z)K,dt

4Af W K3 + 12)@{ (W WEBhK2 4 12A3f W (WBh2K,
_9 2 f 0°° f WAVALY:

2 oo
R WK -2 [T W 2%+ [ kD (WP, 22, 20)

el + (174 S Flog(t).
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