Cambridge, Newton Institute. 2018/9/7.

歐幾里德量子場論的變分方法

M. Gubinelli, University of Bonn (joint work with N. Barashkov)

Cambridge, Newton Institute. 2018/9/7.

歐幾里德量子場論的變分方法

(A variational approach to Euclidean QFT)

M. Gubinelli, University of Bonn (joint work with N. Barashkov)

 \triangleright The Φ_3^4 measure ν is given by the formal prescription

$$\nu(\mathrm{d}\phi) = \frac{e^{-\lambda V(\phi)}}{\mathbb{Z}} \mu(\mathrm{d}\phi), \qquad V(\phi) = \int_{\Lambda} \phi(x)^4 \mathrm{d}x,$$

where μ is the Gaussian measure on $\mathcal{S}'(\Lambda)$ with covariance $(1-\Delta)^{-1}$, $\Lambda \subseteq \mathbb{R}^3$, $\lambda \geqslant 0$.

 \triangleright The measure μ is only supported on distributions of regularity $(2-d)/2-\kappa$, therefore the potential V is not well defined \Rightarrow need for renormalization.

 \triangleright Regularization $\phi_T = \rho_T * \phi$ with $\rho_T \to \delta$ as $T \to \infty$ and introduction of *counterterms*

$$\nu_T(\mathrm{d}\phi) = \frac{e^{-\lambda V_T(\phi_T)}}{\mathcal{Z}_T} \mu(\mathrm{d}\phi), \qquad V_T(\phi) = \int_{\Lambda} (\phi^4 - a_T \phi^2 - b_T) \, \mathrm{d}x \geqslant -C_T > -\infty.$$

Problem: Control the limit $T \to \infty$ of the family $(\nu_T)_T$, describe the limiting object, prove the properties needed for applications to QFT (e.g. Osterwalder–Schrader axioms).

- ▷ Constructive QFT. ('70-'80) Glimm, Jaffe. Nelson. Segal. Guerra, Rosen, Simon...
- $\triangleright (\Phi_3^4)_{\Lambda}$ Glimm ('69). Glimm, Jaffe. Feldman ('74), Y.M.Park ('75)
- $\triangleright (\Phi_3^4)_{\mathbb{R}^3}$ Feldman, Osterwalder ('76). Magnen, Senéor ('76). Seiler, Simon ('76)
- ▷ Other constructions. Benfatto, Cassandro, Gallavotti, Nicolò, Olivieri, Presutti, Scacciatelli ('80) Brydges, Fröhlich, Sokal ('83) Battle, Federbush('83) Williamson ('87) Balaban ('83) Gawedzki, Kupiainen ('85) Watson ('89) Brydges, Dimock, Hurd ('95)
- ▷ Stochastic quantisation (d=2). Jona-Lasinio, P.K.Mitter ('85) Borkar, Chari, S.K.Mitter ('88) Albeverio, Röckner ('91) Da Prato, Debussche ('03) Mourrat, Weber ('17) Röckner, R.Zhu, X.Zhu ('17)
- ▷ Stochastic quantisation (d=3). Hairer ('14) Kupiainen ('16) Catellier, Chouk ('17) Mourrat, Weber ('17) Hairer, Mattingly ('18) R.Zhu, X.Zhu ('18) G, Hofmanova ('18)
- *Tightness via dynamics (d=3)*. Albeverio, Kusuoka ('18) G, Hofmanova ('18)

- \triangleright As $T \to \infty$ fluctuations at different scales adds up independently into $(\phi_T)_T$.
- ▷ Wilson ('83) Polchinski ('84) Brydges, Kennedy ('87) Brydges, Dimock, Hurd ('95) Brydges, Slade, P.K.Mitter ('14)
- **► HJB.** Formally the functional (effective potential)

$$U_t(\psi) \coloneqq -\log \int e^{-\lambda V_T(\psi + \phi_T - \phi_t)} \mu(\mathrm{d}\phi), \qquad U_0(0) = -\log \mathcal{Z}_T,$$

is solution to an Hamilton–Jacobi–Bellman equation (flow equation)

$$\partial_t U_t(\psi) = -Q_t \left[\frac{\delta^2}{\delta \psi \delta \psi} U_t(\psi) + \frac{\delta U_t(\psi)}{\delta \psi} \frac{\delta U_t(\psi)}{\delta \psi} \right], \qquad U_T(\psi) = V_T(\psi).$$

This equation has to be studied in the space of functions over $\mathcal{S}'(\Lambda)$. Proper topology not very clear, diffusion is highly degenerate, not many (none?) results from the PDE point of view.

- \triangleright **Aim.** Present a new proof of existence of the limit $\nu_T \rightarrow \nu$.
- \triangleright **Variational description.** Gibbs measures satisfy a variational principle, ν_T is the unique minimizer of the functional

$$G_T(\nu) = \lambda \int V_T(\phi) d\nu(\phi) + H(\nu|\mu), \qquad G_T(\nu_T) = \inf_{\nu} G_T(\nu) = -\log \mathcal{Z}_T,$$

where $H(\nu|\mu) \geqslant 0$ is relative entropy.

The control of the limit $\nu_T \to \nu$ would follow from the Γ -convergence of the family of variational functionals $(G_T)_T$. Not clear how to obtain the needed estimates from the expression of G_T .

 \triangleright If the probability space is generated by a Brownian motion $(B_t)_t$ the variational formula becomes more precise. $\mathbb P$ Wiener measure, X canonical process: if $\mathbb Q \ll \mathbb P$ then there exists $(u_s)_{s\geqslant 0}$ (Föllmer drift) such that

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} = \exp\left(\int_0^\infty u_s \mathrm{d}X_s - \frac{1}{2} \int_0^\infty |u_s|^2 \mathrm{d}s\right), \qquad H(\mathbb{Q}|\mathbb{P}) = \frac{1}{2} \mathbb{E}_{\mathbb{Q}} \left[\int_0^\infty |u_s|^2 \mathrm{d}s\right].$$

 \mathbb{P} Wiener measure, X canonical process.

Theorem. (Boué-Dupuis) We have the variational representation

$$-\log \mathbb{E}\left[e^{-F(X)}\right] = \inf_{u \in \mathbb{H}_a} \mathbb{E}_{\mathbb{P}}\left[F\left(X + \int_0^{\cdot} u_s ds\right) + \frac{1}{2} \int_0^{\infty} |u_s|^2 ds\right].$$

- Control problem (non–Markovian in general). Useful to get estimates and large deviations.
- ▶ Pathwise point of view: we shift the attention from the value function of optimization problem to the actual control needed to attain it. The problem becomes amenable to standard functional analysis techniques.
- \triangleright The controlled process $X + \int_0^{\cdot} u_s ds$ features explicitly the "free" part X and more regular drift part, similar to solutions to SDEs.
- Boué-Dupuis ('98), X. Zhang ('09), Lehec ('13), Üstünel ('14).

Let $F(X) \ge 0$ be Lipshitz, i.e.

$$|F(X+I(u))-F(X)| \le L||I(u)||_{L^{\infty}([0,1])} \le L\int_{0}^{1} |u_{s}| ds$$

Then

$$\log \mathbb{E}\left[e^{\lambda F(X)}\right] = \sup_{u} \mathbb{E}_{\mathbb{P}}\left[\lambda F(X+I(u)) - \frac{1}{2} \int_{0}^{\infty} |u_{s}|^{2} ds\right]$$

$$\leq \mathbb{E}_{\mathbb{P}}\left[\lambda F(X) + L \|I(u)\|_{L^{\infty}} - \frac{1}{2} \int_{0}^{\infty} |u_{s}|^{2} ds\right]$$

$$\leq \mathbb{E}_{\mathbb{P}}\left[\lambda F(X) + \frac{1}{2} \int_{0}^{1} (2\lambda L |u_{s}| - |u_{s}|^{2}) ds\right] \leq \mathbb{E}_{\mathbb{P}}\left[\lambda F(X)\right] - \frac{1}{2}\lambda^{2}L^{2}.$$

We conclude that F has Gaussian tails. Note that the only additional information needed is $\mathbb{E}_{\mathbb{P}}[|F(X)|] < +\infty$.

Note that L can be random, i.e. L = L(X).

ightharpoonup Fix $\Lambda = \mathbb{T}^3$. Let X be a cylindrical Brownian motion on $L^2(\Lambda)$ and

$$Y_t = \int_0^t \frac{\sigma_s(\mathbf{D})}{\langle \mathbf{D} \rangle} dX_s, \qquad \int_0^t \sigma_s(\mathbf{D})^2 ds = \rho_t(\mathbf{D})^2$$

with $D = |-\Delta|^{1/2}$, $\rho_t(D) = \rho(D/t)$ and $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ smooth, compactly supported and with $\rho(0) = 1$. Then

$$\mathbb{E}_{\mathbb{P}}[Y_T(f)Y_S(g)] = \int_0^{T \wedge S} \left\langle \frac{\sigma_s(\mathbf{D})}{\langle \mathbf{D} \rangle} f, \frac{\sigma_s(\mathbf{D})}{\langle \mathbf{D} \rangle} g \right\rangle ds = \left\langle f, \frac{\rho_{T \wedge S}(\mathbf{D})^2}{\langle \mathbf{D} \rangle^2} g \right\rangle,$$

so $Y_T \sim \rho_T * Y_\infty \sim \rho_T * \phi$ and $(Y_t)_t$ is a martingale.

Boué-Dupuis formula:

$$-\log \mathcal{Z}_T = -\log \mathbb{E}\left[e^{-\lambda V_T(Y_T(X))}\right] = \inf_{u \in \mathbb{H}_a} \mathbb{E}_{\mathbb{P}}\left[\lambda V_T(Y_T + Z_T) + \frac{1}{2} \int_0^\infty \|u_s\|_{L^2}^2 ds\right]$$

with

$$Y(X + \int_0^{\cdot} u_s ds) = Y_T + Z_T, \qquad Z_t = I_t(u) := \int_0^t \frac{\sigma_s(D)}{\langle D \rangle} u_s ds.$$

 \triangleright Regularity estimate.

$$\sup_{0 \le t \le T} \|I_t(v)\|_{H^1}^2 \lesssim \int_0^T \|v_s\|_{L^2}^2 \mathrm{d}s.$$

So, at least heuristically,

$$\mathbb{E}_{\mathbb{P}}\left[\lambda V_T(Y_T + Z_T) + \frac{1}{2} \int_0^\infty \|u_s\|_{L^2}^2 \mathrm{d}s\right] \simeq \mathbb{E}_{\mathbb{P}}\left[\lambda V_T(Y_T + Z_T) + \frac{1}{2} \|\nabla Z_T\|^2\right]$$

 \triangleright When d=2 we can choose the renomalization constants such that

$$\begin{split} \Theta_T(u) &\coloneqq \lambda V_T(Y_T + Z_T) + \frac{1}{2} \int_0^\infty \|u_s\|_{L^2}^2 \mathrm{d}s = \Psi_T(u) + \Phi_T(u) \\ \Psi_T(u) &\coloneqq \lambda \int_\Lambda \|Y_T\|^4 + 4\lambda \int_\Lambda \|Y_T^3\| Z_T + 6\lambda \int_\Lambda \|Y_T^2\| Z_T^2 + 4\lambda \int_\Lambda \|Y_T\| Z_T^3 + \Theta_T(u) \\ \Phi_T(u) &\coloneqq \lambda \int_\Lambda Z_T^4 + \frac{1}{2} \int_0^\infty \|u_s\|_{L^2}^2 \mathrm{d}s \end{split}$$

where $[Y_T^k]$ are Wick polynomials of the (smooth) Gaussian field $(Y_T)_T$. In particular $T \mapsto [Y_T^k]$ is a martingale.

ightharpoonup Standard estimates show that $[Y_T^k] \in C([0, \infty], \mathscr{C}^{-\kappa}(\Lambda))$ almost surely with $L^p(\mathbb{P})$ norms for all $p \geqslant 1$ and $\kappa < 0$. Here $\mathscr{C}^\alpha(\Lambda) = B^\alpha_{\infty,\infty}(\Lambda)$ are Hölder–Besov spaces of regularity $\alpha \in \mathbb{R}$.

Now the game is to control the terms without sign with the good terms. Let $W_T = Y_T$.

$$\begin{aligned} \left| 4\lambda \int_{\Lambda} \mathbb{I} W_{T}^{3} \mathbb{I} Z_{T} \right| &\leq 4\lambda \| \mathbb{I} W_{T}^{3} \|_{H^{-1}} \| Z_{T} \|_{H^{1}} \leq C\left(\delta, d\right) \lambda^{2} \| \mathbb{I} W_{T}^{3} \|_{H^{-1}}^{2} + \delta \int_{0}^{T} \| u_{s} \|_{L^{2}}^{2} \mathrm{d}s \\ & \left| 6\lambda \int_{\Lambda} \mathbb{I} W_{T}^{2} \mathbb{I} Z_{T}^{2} \right| \leq \frac{C^{2} \lambda^{3}}{2\delta} \| \mathbb{I} W_{T}^{2} \|_{W^{-\varepsilon, 5}}^{4} + \delta \left(\| Z_{T} \|_{W^{1, 2}}^{2} + \lambda \| Z_{T} \|_{L^{4}}^{4} \right) \\ & \left| 4\lambda \int_{\Lambda} W_{T} Z_{T}^{3} \right| \leq CE\left(\lambda\right) \| W_{T} \|_{W^{-1/2-\varepsilon, p}}^{K} + \delta \left(\| Z_{T} \|_{W^{1, 2}}^{2} + \lambda \| Z_{T} \|_{L^{4}}^{4} \right) \end{aligned}$$

Therefore

$$-K_T + (1 - \delta) \Phi_T(u) \leq \mathbb{E} \left[\Psi_T(u) + \Phi_T(u) \right] \leq K_T + (1 + \delta) \Phi_T(u),$$

which implies

$$\sup_{T} |\log \mathcal{Z}_{T}| = \sup_{T} \left| \inf_{u \in \mathbb{H}_{a}} \mathbb{E}_{\mathbb{P}} [\Psi_{T}(u) + \Phi_{T}(u)] \right| \lesssim O(\lambda^{2}).$$

 \triangleright In three dimensions W_{∞} is more irregular and as a consequence we get uniform estimates for the Wick powers only in the following spaces

$$\llbracket W_T \rrbracket \in \mathscr{C}^{-1/2-\kappa}, \llbracket W_T^2 \rrbracket \in \mathscr{C}^{-1-\kappa}, \llbracket W_T^3 \rrbracket \in \mathscr{C}^{-3/2-\kappa}.$$

- \triangleright As a consequence we cannot hope to control the term $\int_{\Lambda} \llbracket W_T^3 \rrbracket Z_T$, and $\int_{\Lambda} \llbracket W_T^2 \rrbracket Z_T^2$ as we did in two dimensions. Indeed we only have control of Z_T in H^1 and L^4 .
- ▷ By perturbative considerations one expects further divergences (beyond Wick ordering) therefore the functional to minimize is now

$$\mathbb{E}\left[\lambda \int_{\Lambda} \mathbb{W}_{T}^{3} Z_{T} + \frac{\lambda}{2} \int_{\Lambda} \mathbb{W}_{T}^{2} Z_{T}^{2} + 4\lambda \int_{\Lambda} W_{T} Z_{T}^{3}\right]$$

$$-\mathbb{E}\left[2\gamma_T\int_{\Lambda}W_TZ_T+\gamma_T\int_{\Lambda}Z_T^2\right]+\mathbb{E}\left[\lambda\int_{\Lambda}Z_T^4+\frac{1}{2}\int_0^T\|u_s\|_{L^2}^2\mathrm{d}s\right].$$

where we introduced the convenient notations: $\mathbb{W}_t^3 \coloneqq 4 \llbracket W_t^3 \rrbracket$, $\mathbb{W}_t^2 \coloneqq 12 \llbracket W_t^2 \rrbracket$.

> We aim to "complete the square" in order to eliminate the terms which we cannot control. So we control the system which a drift of the form

$$u_s = -\lambda J_s (\mathbb{W}_s^3 + \mathbb{W}_s^2 > Z_s) + w_s$$

$$\dot{Z}_s = J_s u_s = -\lambda J_s^2 (W_s^3 + W_s^2 > Z_s) + \dot{K}_s$$

where w is a free control and $J_s = \langle D \rangle^{-1} \sigma_s(D)$.

- $\triangleright Paraproducts. fg = f < g + f \circ g + f > g.$ (Bony, Meyer ('80))
- > The cost of such a drift is

$$\frac{1}{2} \int_0^T ||u_s||^2 ds = \frac{\lambda^2}{2} \int_0^T \int_{\Lambda} (J_s(\mathbb{W}_s^3 + \mathbb{W}_s^2 > Z_s))^2 ds$$

$$-\lambda \int_{0}^{T} \int_{\Lambda} (\mathbb{W}_{s}^{3} + \mathbb{W}_{s}^{2} > Z_{s}) \dot{Z}_{s} ds + \frac{1}{2} \int_{0}^{T} \|w_{s}\|^{2} ds$$

▷ Integration by parts in the time variable allows to transform the mixed terms in this cost to

$$-\lambda \int_{0}^{T} \int_{\Lambda} (\mathbb{W}_{s}^{3} + \mathbb{W}_{s}^{2} > Z_{s}) \dot{Z}_{s} ds = -\lambda \int_{\Lambda} (\mathbb{W}_{T}^{3} + \mathbb{W}_{T}^{2} > Z_{T}) Z_{T}$$
$$+\lambda \int_{0}^{T} \int_{\Lambda} (\mathbb{W}_{s}^{3} + \mathbb{W}_{s}^{2} > \dot{Z}_{s}) Z_{s} ds + \text{martingale}$$

which after some analysis will cancel the terms

$$\lambda \int_{\Lambda} (\mathbb{W}_T^3 Z_T + \mathbb{W}_T^2 Z_T^2)$$

modulo some nice remainder.

▷ The quadratic term generated by the new cost looks like (again after some integration by parts)

$$\frac{\lambda^2}{2} \int_0^T \int_{\Lambda} (J_s(\mathbb{W}_s^3 + \mathbb{W}_s^2 > Z_s))^2 ds = \frac{\lambda^2}{2} \int_0^T \int_{\Lambda} (J_s(\mathbb{W}_s^3))^2 ds$$
$$+ \frac{\lambda^2}{2} \int_0^T \int_{\Lambda} [(J_s(\mathbb{W}_s^2 > Z_s))^2 - 2\dot{\gamma}_s Z_s^2] ds$$

$$+\lambda^2 \int_0^T \int_{\Lambda} \left[\left(J_s(\mathbb{W}_s^3) \right) \left(J_s(\mathbb{W}_s^2 > Z_s) \right) - 2\dot{\gamma}_s W_s Z_s \right] \mathrm{d}s + \lambda^2 \int_0^T \int_{\Lambda} \dot{\gamma}_s \left[\left(Z_s \right)^2 + 2W_s Z_s \right] \mathrm{d}s$$

where we have introduced an abitrary function $(\gamma_s)_s$. In this expression now the first term is divergent but independend of the control, the two middle terms can be shown to be finite provided the counterterm γ is chosen appropriately and finally, the last term is compensated by

$$2\gamma_T \int_{\Lambda} W_T Z_T + \gamma_T \int_{\Lambda} Z_T^2$$
.

Let us see how does it work for

$$A = \frac{\lambda^2}{2} \int_0^T \int_{\Lambda} [(J_s(\mathbb{W}_s^2 > Z_s))^2 - 2\dot{\gamma}_s Z_s^2] ds.$$

 \triangleright Commutator lemma. $J_s \mathbb{W}_s^2 \in \mathscr{C}^{-\kappa}$ and $Z_s \in H^{1/2-\kappa}$

$$\int_{\Lambda} (J_s(\mathbb{W}_s^2 > Z_s))^2 = \int_{\Lambda} (J_s(\mathbb{W}_s^2 > Z_s)) \circ (J_s(\mathbb{W}_s^2 > Z_s))$$

$$\simeq \int_{\Lambda} (J_s \mathbb{W}_s^2) \circ (J_s \mathbb{W}_s^2) Z_s^2 + \int_{\Lambda} \underbrace{C(J_s \mathbb{W}_s^2, J_s \mathbb{W}_s^2, Z_s)}_{\in B_{1,1}^{0+}}$$

Therefore

$$A = \frac{\lambda^2}{2} \int_0^T \int_{\Lambda} \underbrace{\left[(J_s \mathbb{W}_s^2) \circ (J_s \mathbb{W}_s^2) - 2\dot{\gamma}_s \right]}_{\mathbb{W}^{2 \diamond 2} \in \mathscr{C}^{-\kappa}} Z_s^2 ds$$

Similarly

$$\mathbb{W}_s^{2 \diamond 3} \coloneqq (J_s \mathbb{W}_s^3) \circ (J_s \mathbb{W}_s^2) - 2\dot{\gamma}_s W_s \in \mathscr{C}^{-1/2 - \kappa}$$

$$\mathbb{W}_T := (W_T, \mathbb{W}_T^2, \mathbb{W}_T^3, \mathbb{W}^{2 \diamond 2}, \mathbb{W}_s^{2 \diamond 3}) \in \mathfrak{W} = \mathscr{C}^{-1/2 - \kappa} \times \mathscr{C}^{-1 - \kappa} \times \mathscr{C}^{-3/2 - \kappa} \times \mathscr{C}^{-\kappa} \times \mathscr{C}^{-1/2 - \kappa}$$

$$\begin{split} -\log \mathcal{Z}_{T}(\lambda) &= \inf_{u \in \mathbb{H}_{a}} \mathbb{E} \left[\lambda V_{T}(Y_{T} + I_{T}(u)) + \frac{1}{2} \int_{0}^{\infty} \|u_{s}\|_{L^{2}}^{2} \mathrm{d}s \right] \\ &= \inf_{l \in \mathbb{H}_{a}} \mathbb{E} \left[E_{T}(Z(l), K(l)) + \lambda \|Z_{T}(l)\|_{L^{4}}^{4} + \frac{1}{2} \int_{0}^{\infty} \|l_{s}\|_{L^{2}}^{2} \mathrm{d}s \right] \\ &=: \inf_{l \in \mathbb{H}_{a}} \tilde{F}_{T}(l) \end{split}$$

where $Z = Z(l) \in H^{1/2-\varepsilon}$ and $K = K(l) \in H^{1-\varepsilon}$ solve the integral equations

$$Z_{t}(l) = -\lambda \int_{0}^{t} J_{s}^{2} \mathbb{W}_{s}^{3} ds + K_{t}(l), \qquad K_{t}(l) = -\lambda \int_{0}^{t} J_{s}^{2} (\mathbb{W}_{s}^{2} > Z_{s}(l)) ds + \int_{0}^{t} J_{s} l_{s} ds.$$

▷ Estimates of the form

$$|E_T(Z(l),K(l))| \leq C \|\mathcal{W}_T\|_S^K + \delta \|Z_T(l)\|_{L^4}^4 + \delta \|K(l)\|_{H^{1-\varepsilon}}^2.$$

Variational setting. (X,l) canonical variables on $C([0,\infty],\mathfrak{W})\times L^2_w([0,\infty)\times\Lambda)$

$$\mathcal{X} \coloneqq \{ \mu \in P(C([0,\infty],S) \times L_w^2([0,\infty) \times \Lambda)) \mid \mu = \text{Law}_{\mathbb{P}}(W,u) \text{ for some } u \in \mathbb{H}_a \}.$$

▶ Then

$$-\log \mathcal{Z}_T(\lambda) = \inf_{\mu \in \mathcal{Z}} F_T(\mu) = \inf_{\mu \in \bar{\mathcal{Z}}} F_T(\mu)$$

where, for $T \in [0, \infty]$,

$$F_T(\mu) \coloneqq \mathbb{E}_{\mu} \left[E_T(Z(l), K(l)) + \lambda \| Z_T(l) \|_{L^4(\Lambda)}^4 + \frac{1}{2} \int_0^\infty \| l_s \|_{L^2}^2 \mathrm{d}s \right].$$

 \triangleright The choice of \mathscr{X} is dictated by the fact that the family $(F_T)_T$ is now equicoercive, namely that there exists a compact $\mathscr{K} \subseteq \mathscr{X}$ such that

$$\inf_{x \in \mathcal{K}} F_T(x) = \inf_{x \in \mathcal{X}} F_T(x), \quad \text{for all } T.$$

 \triangleright Finally using the continuity of the map E and the lower semicontinuity of the L^4 and entropy terms we establish

$$\Gamma$$
- $\lim_{T\to\infty} F_T = F_{\infty}$.

Namely that

• For every sequence $\mu^T \to \mu$ in $\bar{\mathcal{X}}$:

$$F_{\infty}(\mu) \leqslant \liminf_{T} F_{T}(\mu^{T}),$$

• For every $\mu \in \bar{\mathcal{X}}$ there exists a sequence $\mu^T \to \mu$ in $\bar{\mathcal{X}}$ such that

$$F_{\infty}(\mu) \geqslant \limsup_{T} F_{T}(\mu^{T}).$$

 \triangleright A consequence of Γ -convergence is the convergence of minima:

$$\lim_{T\to\infty} (-\log \mathcal{Z}_T) = \lim_{T\to\infty} \inf_{\bar{\mathcal{X}}} F_T = \min_{\bar{\mathcal{X}}} F_\infty.$$

We obtain *explicit* variational formula for the limiting functional

$$-\log \mathcal{Z}_{\infty}(f) = \inf_{l \in \mathbb{H}_a} \mathbb{E}\left[-\int_{\Lambda} f Z_{\infty}(l) + E_{\infty}(Z(l), K(l)) + \lambda \|Z_{\infty}(l)\|_{L^4(\Lambda)}^4 + \frac{1}{2} \int_0^{\infty} \|l_s\|_{L^2}^2 \mathrm{d}s\right]$$

defined for all $f \in \mathcal{S}(\Lambda)$ with

$$\mathcal{Z}_{\infty}(f) = \lim_{T} \mathcal{Z}_{T}(f), \qquad \mathcal{Z}_{T}(f) = \mathcal{Z}_{T} \mathbb{E}_{\nu} [e^{\int_{\Lambda} f \phi_{T}}] = \int e^{\int_{\Lambda} f \phi_{T} - \lambda V_{T}(\phi_{T})} \mu(\mathrm{d}\phi).$$

- \triangleright The interest of this formula lies in the fact that the Φ_3^4 measure is not absolutely continuous wrt. the Gaussian free field, so an explicit description was lacking.
- ▶ The variational formula seems a promising way to extract informations from this measure. E.g. large deviations, weak universality, pathwise properties, etc...

$$E_{\infty}(Z(l), K(l)) = E_{\infty}(Z, K) = \sum_{i=1}^{6} \Upsilon_{\infty}^{(i)}$$

with

$$\Upsilon_{\infty}^{(1)} := \frac{\lambda}{2} \kappa^{(2)} (\mathbb{W}_{\infty}^{2}, K_{\infty}, K_{\infty}) + \frac{\lambda}{2} \int (\mathbb{W}_{\infty}^{2} \langle K_{\infty}) K_{\infty} - \lambda^{2} \int (\mathbb{W}_{\infty}^{2} \langle \mathbb{W}_{\infty}^{[3]}) K_{\infty}
\Upsilon_{\infty}^{(2)} = 0
\Upsilon_{\infty}^{(3)} := \lambda \int_{0}^{\infty} \int (\mathbb{W}_{t}^{2} \rangle \dot{Z}_{t}^{\flat}) K_{t} dt
\Upsilon_{\infty}^{(4)} := 4\lambda \int \mathbb{W}_{\infty} K_{\infty}^{3} + 12\lambda^{2} \int (\mathbb{W}_{\infty} \mathbb{W}_{\infty}^{[3]}) K_{\infty}^{2} + 12\lambda^{3} \int \mathbb{W}_{\infty} (\mathbb{W}_{\infty}^{[3]})^{2} K_{\infty}
\Upsilon_{\infty}^{(5)} := -2\lambda^{2} \int_{0}^{\infty} \int \gamma_{t} Z_{t}^{\flat} \dot{Z}_{t}^{\flat} dt
\Upsilon_{\infty}^{(6)} := -\lambda^{2} \int \mathbb{W}_{\infty}^{2 \diamond [3]} K_{\infty} - \lambda^{2} \int_{0}^{T} \int \mathbb{W}_{t}^{2 \diamond 2} (Z_{t}^{\flat})^{2} dt + \frac{\lambda^{2}}{2} \int_{0}^{\infty} \kappa_{t}^{(1)} (\mathbb{W}_{t}^{2}, Z_{t}^{\flat}, Z_{t}^{\flat})$$

and

$$|\gamma_t| + \langle t \rangle |\dot{\gamma}_t| \lesssim \lambda^2 \log \langle t \rangle.$$

謝謝