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Branching Brownian motion with absorption

Begin with some configuration of particles in (0,∞).

Each particle independently moves according to standard one-

dimensional Brownian motion with drift −µ.

Each particle splits into two at rate 1/2 (more general supercrit-

ical offspring distributions can also be handled).

Particles are killed if they reach the origin.
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Motivation

1. Population models with selection. BBM with absorp-
tion can model populations subject to natural selection (Brunet,
Derrida, Mueller, and Munier, 2006).

particles → individuals in the population
positions of particles → fitness of individuals
branching events → births
absorption at 0 → deaths of unfit individuals
movement of particles → changes in fitness over generations

2. Connections with PDEs. Position of right-most particle in
BBM can be studied using the FKPP equation (McKean, 1975).
Harris, Harris, and Kyprianou (2006) use BBM with absorption.

3. Applications to other processes. Techniques developed
for BBM have been used to study extremes of:

• Two-dimensional discrete Gaussian free field (Bramson, Ding,
and Zeitouni, 2016; Biskup and Louidor, 2018)

• Two-dimensional cover times (Belius and Kistler, 2017)

• Log-correlated Gaussian fields (Ding, Roy, and Zeitouni, 2017)



Condition for extinction

Theorem (Kesten, 1978): Branching Brownian motion with ab-

sorption dies out almost surely if µ ≥ 1. If µ < 1, the process

survives forever with positive probability.

Hereafter, we always assume µ = 1 (critical drift).

Questions

• What is the probability that the process survives until a large

time t?

• Conditional on survival until a large time t, what does the

configuration of particles look like at time t? (Such results

are known as Yaglom-type limit theorems.)



Long-run survival probability

Let N(t) be the number of particles at time t.
Let ζ = inf{t : N(t) = 0} be the extinction time.
Let c = (3π2/2)1/3.

Theorem (Kesten, 1978): There exists K > 0 such that for
each x > 0, we have for sufficiently large t:

xex−ct
1/3−K(log t)2

≤ Px(ζ > t) ≤ (1 + x)ex−ct
1/3+K(log t)2

.

Theorem (BMS, 2018+): There is a positive constant C such
that for all x > 0, we have as t→∞,

Px(ζ > t) ∼ Cxex−ct
1/3
.

Remark:

• Derrida and Simon (2007) obtained result nonrigorously.

• The weaker bound C1xe
x−ct1/3 ≤ Px(ζ > t) ≤ C2xe

x−ct1/3
was

obtained by BBS (2014).



The process conditioned on survival

Let N(t) be the number of particles at time t.

Let R(t) be the position of the right-most particle at time t.

Theorem (Kesten, 1978): There are positive constants K1 and

K2 such that for all x > 0,

lim
t→∞

Px(N(t) > eK1t
2/9(log t)2/3

|ζ > t) = 0

lim
t→∞

Px(R(t) > K2t
2/9(log t)2/3|ζ > t) = 0.

Theorem (BMS, 2018+): If the process starts with one particle

at x > 0, then conditional on survival until time t,

t−2/9 logN(t)⇒ V 1/3

t−2/9R(t)⇒ V 1/3,

where V has an exponential distribution with mean 3c2.



First moment calculations

Consider a single Brownian particle started at x, with drift of
−1 and absorption at 0. The “density” of the position of the
particle at time t is

pt(x, y) =
1√
2πt

(
e−(x−y)2/2t − e−(x+y)2/2t

)
· ex−y−t/2.

For BBM with absorption, let X1(t) ≥ X2(t) ≥ · · · ≥ XN(t)(t) be
the positions of particles at time t. Let

qt(x, y) = et/2pt(x, y).

Theorem (Many-to-One Lemma): If f : (0,∞)→ R, then

Ex

[N(t)∑
i=1

f(Xi(t))

]
=
∫ ∞

0
f(y)qt(x, y) dy.

Take f = 1A to get expected number of particles in a set A.



Second moment calculations

Theorem (Ikeda, Nagasawa, Watanabe,1969): If f : (0,∞)→ R,

then

Ex

[(N(t)∑
i=1

f(Xi(t))

)2]
=
∫ ∞

0
f(y)2qt(x, y) dy +

2
∫ t

0

∫ ∞
0

∫ ∞
0

∫ ∞
0

f(y1)f(y2)qs(x, z)qt−s(z, y1)qt−s(z, y2) dy1 dy2 dz ds.

Moments are dominated by rare events in which one particle

drifts unusually far to the right and has many surviving offspring.

Truncation: kill particles that get too far to the right.

Moments can be calculated the same way, after adjusting qt(x, y).



Branching Brownian motion in a strip

Consider Brownian motion killed at 0 and L. If there is initially
one particle at x, the “density” of the position at time t is:

pLt (x, y) =
2

L

∞∑
n=1

e−π
2n2t/2L2

sin

(
nπx

L

)
sin

(
nπy

L

)
.

Add branching at rate 1/2 and drift of −1, “density” becomes:

qLt (x, y) = pLt (x, y) · e(x−y)−t/2 · et/2,

meaning that if A ⊂ (0, L), the expected number of particles in
A at time t is

∫
A q

L
t (x, y) dy. For t� L2,

qLt (x, y) ≈
2

L
e−π

2t/2L2
· ex sin

(
πx

L

)
· e−y sin

(
πy

L

)
.

• The expected number of future descendants of a particle at
x is proportional to ex sin(πx/L).

• For t� L2, particles settle into a fairly stable configuration,
number of particles near y is proportional to e−y sin(πy/L).



A curved right boundary

Fix t > 0. Let Lt(s) = c(t− s)1/3, where c = (3π2/2)1/3.
Consider BBM with particles killed at 0 and Lt(s).
This right boundary was previously used by Kesten (1978).

Roughly, a particle that gets within a constant of Lt(s) at time
s has a good chance to have a descendant alive at time t.

time 0

time t

s 7→ Lt(s)

u
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Use methods of Novikov (1981) and Roberts (2012) to
approximate the density and then compute moments.

Density formula resembles that for BBM in a strip.



Beyond truncated moment calculations

When particles are killed at 0 and at Lt(s):

• Second moment is too large to conclude that the number of
particles in the system stays close to its expectation.

• The probability that a particle is killed at Lt(s) does not
tend to zero, though the expected number of such particles
is bounded by a constant.

Idea: kill particles instead at Lt(s) +A:

• Let A → −∞, and then the number of particles stays close
to its expectation.

• Let A→∞, and then the probability that a particle hits the
right boundary tends to zero.

Because we can’t do both, proceed as follows:

• Stop particles when they reach Lt(s)−A, for large A.

• After a particle hits Lt(s)−A, follow the descendants of this
particle until they reach Lt(s) − A − y for large y. Then re-
incorporate them into the process.



The particles that hit Lt(s)−A

Consider branching Brownian motion with drift −1 started with
one particle at L.

Let M(y) be the number of particles that reach L−y, if particles
are killed upon reaching L− y.

Conditional on M(x), the distribution of M(x + y) is the dis-
tribution of M(x) independent random variables with the same
distribution as M(y). Therefore, (M(y), y ≥ 0) is a continuous-
time branching process.

Theorem (Neveu, 1987): There exists a random variable W
such that almost surely

lim
y→∞ ye

−yM(y) = W.

Proposition (Maillard, 2012; Berestycki, Berestycki, Schweins-
berg, 2013):

P (W > x) ∼
1

x
as x→∞.



Putting the pieces together

Consider BBM with drift at rate -1, branching at rate 1/2, and
absorption at 0.

Let N(s) be the number of particles at time s.

Let X1(s) ≥ X2(s) ≥ · · · ≥ XN(s)(s) be the positions of the
particles at time s.

Let t > 0. For 0 ≤ s ≤ t, let

Zt(s) =
N(s)∑
i=1

Lt(s)e
Xi(s)−Lt(s) sin

(
πXi(s)

Lt(s)

)
1{0<Xi(s)<Lt(s)}.

The processes (Zt(s),0 ≤ s ≤ t) converge as t→∞:

• The limit process has jumps of size greater than x at a rate
proportional to x−1.

• The jump rate at time s is also proportional to Zt(s).

Limit is a continuous-state branching process.



Continuous-state branching processes (Lamperti, 1967)

A continuous-state branching process (CSBP) is a [0,∞)-valued
Markov process (X(t), t ≥ 0) whose transition functions satisfy

pt(a+ b, ·) = pt(a, ·) ∗ pt(b, ·).

CSBPs arise as scaling limits of Galton-Watson processes.

Let (Y (s), s ≥ 0) be a Lévy process with no negative jumps with
Y (0) > 0, stopped when it hits zero. Let

S(t) = inf
{
u :

∫ u
0
Y (s)−1 ds > t

}
.

The process (X(t), t ≥ 0) defined by X(t) = Y (S(t)) is a CSBP.
Every CSBP can be obtained this way.

If Y (0) = a, then E[e−qY (t)] = eaq+tΨ(q), where

Ψ(q) = αq + βq2 +
∫ ∞

0
(e−qx − 1 + qx1{x≤1}) ν(dx).

The function Ψ is the branching mechanism of the CSBP.



Convergence to the CSBP

Neveu (1992) considered the CSBP with branching mechanism

Ψ(q) = aq + bq log q = cq +
∫ ∞

0
(e−qx − 1 + qx1{x≤1}) bx

−2 dx.

Rate of jumps of size at least x is proportional to x−1.

Theorem (BMS, 2018+): If Zt(0)⇒ Z and Lt(0)−R(0)→p ∞
as t→∞, then the finite-dimensional distributions of

(Zt((1− e−u)t), u ≥ 0)

converge as t → ∞ to the finite-dimensional distributions of

(X(u), u ≥ 0), which is a CSBP with X(0) =d Z and branch-

ing mechanism Ψ(q) = aq + 2
3q log q.

Note: The value of the constant a ∈ R is unknown.



Asymptotics for the CSBP

Let (X(u), u ≥ 0) be a CSBP with X(0) = x > 0 and branching

mechanism Ψ(q) = aq + 2
3q log q.

Results of Gray (1974) give

Px(0 < X(u) <∞ for all u ≥ 0) = 1.

Letting α = e−3a/2,

Px
(

lim
u→∞X(u) =∞

)
= 1− e−αx, Px

(
lim
u→∞X(u) = 0

)
= e−αx.

Interpretation (Bertoin, Fontbona, Martinez, 2008): The CSBP

at time zero may include “prolific individuals”, whose number of

descendants at time u tends to infinity as u → ∞. The number

of prolific individuals has a Poisson distribution with mean αx.

Survival of BBM until time t corresponds to lim
u→∞X(u) =∞.



Survival probability for BBM

Theorem (BMS, 2018+): Assume the initial configuration of
particles is deterministic, but may depend on t. Recall that ζ

denotes the extinction time.

• If Zt(0)→ z and Lt(0)−R(0)→∞ as t→∞, then

lim
t→∞

P (ζ > t) = 1− e−αz.

• If Zt(0)→ 0 and Lt(0)−R(0)→∞, then

P (ζ > t) ∼ αZt(0).

• If at time zero there is only a single particle at x, then

Px(ζ > t) ∼ απxex−Lt(0).

• If at time zero there is a single particle at Lt(0) + x, then

lim
t→∞

PLt(0)+x(ζ > t) = φ(x),

where lim
x→∞φ(x) = 1 and lim

x→−∞
φ(x) = 0.



Asymptotics of survival time

Theorem (BMS, 2018+): Assume the initial configuration is

deterministic and satisfies Zt(0) → 0 and Lt(0) − R(0) → ∞ as

t→∞. Conditional on ζ > t,

t−2/3(ζ − t)⇒ V,

where V has an exponential distribution with mean 3/c.

Proof: By the previous result,

P (ζ > t+ yt2/3 | ζ > t) =
P (ζ > t+ yt2/3)

P (ζ > t)
∼
αZ

t+yt2/3(0)

αZt(0)
∼ e−cy/3.



A Yaglom-type result

For BBM at time t that will go extinct at time t+ s:

• Zt+s(t) will not be close to 0 or ∞.

• “density” of particles near y is proportional to e−y sin
(

πy
Lt+s(t)

)
.

• right-most particle is near Lt+s(t) = cs1/3.

• N(t) is of the order s−1eLt+s(t), so logN(t) ≈ cs1/3.

Conditional on ζ > t, the process will survive an additional t2/3V

time units. Then R(t) ≈ logN(t) ≈ c(t2/3V )1/3 = ct2/9V 1/3.

Theorem (BMS, 2018+): Assume the initial configuration is
deterministic and satisfies Zt(0) → 0 and Lt(0) − R(0) → ∞ as
t→∞. Conditional on ζ > t,

t−2/9 logN(t)⇒ cV 1/3,

t−2/9R(t)⇒ cV 1/3.



The conditioned BBM before time t

Theorem (BMS, 2018+): Assume the initial configuration is

deterministic and satisfies Zt(0) → 0 and Lt(0) − R(0) → ∞ as

t→∞. Conditional on ζ > t, the finite-dimensional distributions

of the processes

(Zt((1− e−u)t), u ≥ 0)

converge as t → ∞ to the finite-dimensional distributions of a

CSBP with branching mechanism Ψ(q) = aq+ 2
3q log q started at

0 and conditioned to go to infinity.

Remark: The law of the CSBP started at x > 0 and conditioned

to go to infinity has a limit as x→ 0. The limit can be interpreted

as the process that keeps track of the number of descendants of

a single prolific individual.


