Distributionally Robust Chance-Constrained Generation Expansion Planning

Farzaneh Pourahmadi¹ Christos Ordoudis² Jalal Kazempour² Pierre Pinson²

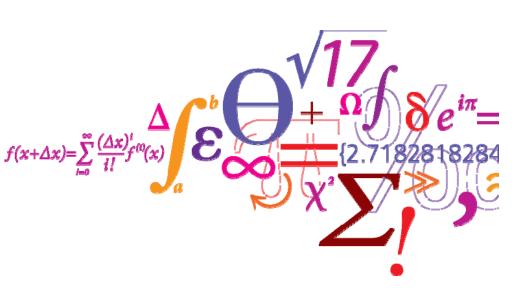
¹ Sharif University of Technology, Iran

² Technical University of Denmark (DTU) $f(x+\Delta x) = \sum_{l=0}^{\infty} \frac{(\Delta x)}{l!}$

Issac newton institute

21 March 2019

DTU Electrical Engineering Department of Electrical Engineering



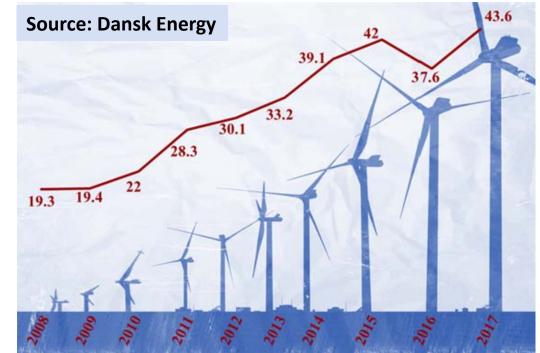
Happy New Year!

Today is the first day of Persian calendar (and the first day of Spring)!

DTU Electrical Engineering, Technical University of Denmark

This is happening in Denmark!

Contribution of wind energy to power consumption (%)



In 2017:

- **43.6%** of electricity
- consumption covered by wind
- 1,460 hours of excess wind

- High uncertainty in supply
- Increased need for operational flexibility in the power systems

The Keywords of This Talk

- Generation expansion planning problem
- Uncertainty
 - Long-term uncertainty (e.g., demand growth, regulation policies)
 - □ Short-term uncertainty (e.g., wind production, demand)

- Operational limits
 - Unit commitment constraints

Challenges

• The true probability distribution of uncertainty (especially short-term uncertainty) is unknown!

Challenges

- The true probability distribution of uncertainty (especially short-term uncertainty) is unknown!
- By adding more renewables, the net-load profile becomes more and more volatile and uncertain! Can we still ignore the unit commitment constraints in expansion problems?

Challenges

- The true probability distribution of uncertainty (especially short-term uncertainty) is unknown!
- By adding more renewables, the net-load profile becomes more and more volatile and uncertain! Can we still ignore the unit commitment constraints in expansion problems?
 - If not, the load duration curve (LDC)-based models may no longer be appropriate [1]-[2].

[1] B. S. Palmintier and M. D. Webster, "Impact of operational flexibility on electricity generation planning with renewable and carbon targets," *IEEE Trans. Sustain. Energy*, vol. 7, no. 2, pp. 672–684, Apr. 2016.

[2] B. Hua, R. Baldick, and J. Wang, "Representing operational flexibility in generation expansion planning through convex relaxation of unit commitment," *IEEE Trans. Power Syst.*, vol. 33, no. 2, pp. 2272–2281, Mar. 2018.

Research Questions

In a generation expansion problem:

How can the **short-term uncertainty** be properly modeled while the true probability distribution is unknown?

Research Questions

In a generation expansion problem:

How can the **short-term uncertainty** be properly modeled while the true probability distribution is unknown?

How to ensure that the **unit commitment constraints** are properly taken into account while maintaining the computational tractability?

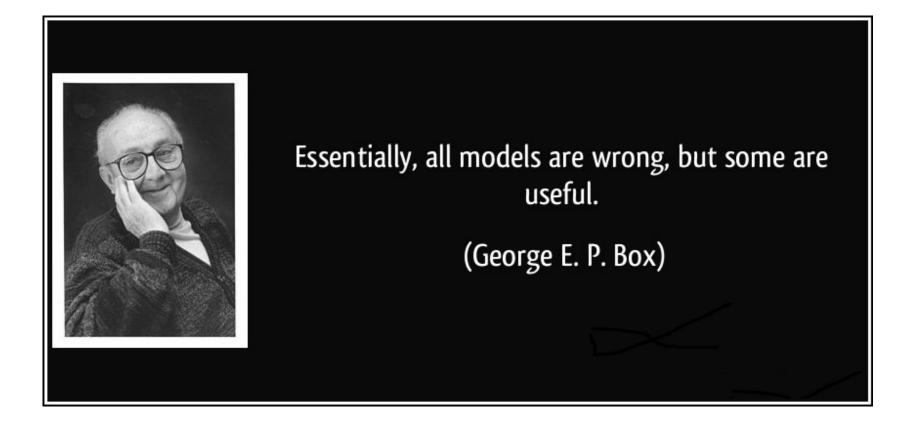
Research Questions

In a generation expansion problem:

How can the **short-term uncertainty** be properly modeled while the true probability distribution is unknown?

How to ensure that the **unit commitment constraints** are properly taken into account while maintaining the computational tractability?

How important is to model the **spatial and temporal correlations** of renewable uncertainty?



Outline

- ✓ Background
- ✓ Model
- ✓ Solution Strategy
- ✓ Numerical Study
- ✓ Conclusion and Future Work

Outline

✓ Background

✓ Model

✓ Solution Strategy

✓ Numerical Study

✓ Conclusion and Future Work

Alternatives for modeling uncertainty:

Alternatives for modeling uncertainty:

□ Stochastic programming

- Siven a finite set of scenarios, it optimizes the problem in expectation.
- > A risk metric (e.g., CVaR) can be incorporated.

Alternatives for modeling uncertainty:

□ Stochastic programming

- ➢ Given a finite set of scenarios, it optimizes the problem in expectation.
- A risk metric (e.g., CVaR) can be incorporated.

To be able to model all potential probability distributions of the short-term uncertainty, a significant (or even infinite) number of scenarios is required!

- Too many scenarios Computational issues
- A reduced number of scenarios Weak out-of-sample performance

Alternatives for modeling uncertainty:

Robust optimization

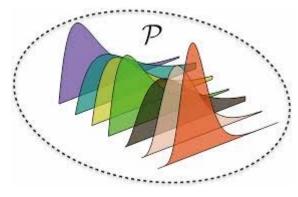
Given an uncertainty set, it optimizes the problem for the worst-case realization in the set, while keeping the problem feasible for the entire set.

> Potentially results in a too conservative solution!

Alternatives for modeling uncertainty:

Distributionally robust optimization

Given a family of probability distributions (the so-called "ambiguity set") which includes infinite number of distributions,

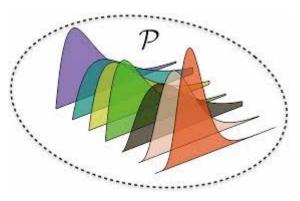


Source: MIT.edu/vanparys

Alternatives for modeling uncertainty:

Distributionally robust optimization

Given a family of probability distributions (the so-called "ambiguity set") which includes infinite number of distributions,



Source: MIT.edu/vanparys

- it optimizes the problem in expectation for the worst-case probability distribution in the ambiguity set.
- The conservativeness can be adjusted by having chance constraints.

Among others, the two common alternatives in the literature for **building an ambiguity set** are:

Among others, the two common alternatives in the literature for **building an ambiguity set** are:

Moment-based ambiguity set

It includes all probability distributions with the same moments (e.g., mean and variance).

Among others, the two common alternatives in the literature for **building an ambiguity set** are:

Moment-based ambiguity set

It includes all probability distributions with the same moments (e.g., mean and variance).

Metric-based ambiguity set

It includes all probability distributions whose distance from an empirical distribution is lower than or equal to a given value.

Among others, the two common alternatives in the literature for **building an ambiguity set** are:

Moment-based ambiguity set

It includes all probability distributions with the same moments (e.g., mean and variance).

Metric-based ambiguity set

It includes all probability distributions whose distance from an empirical distribution is lower than or equal to a given value.

Many interesting talks are available at:

"Distributionally Robust Optimization" Seminar, *Banff International Research Station*, May 2018. <u>https://www.birs.ca/events/2018/5-day-workshops/18w5102/schedule</u>

Outline

✓ Background

✓ Model

✓ Solution Strategy

✓ Numerical Study

✓ Conclusion and Future Work

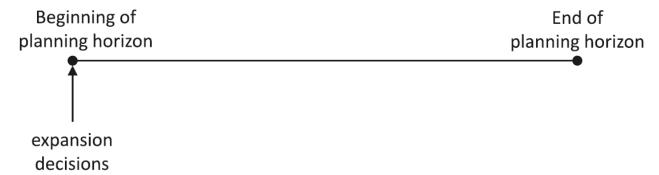
□ Static (single-stage) model

Source of figures: A. J. Conejo, L. Baringo, JK, and A. S. Siddiqui, "Investment in electricity generation and transmission," Decision Making Under Uncertainty. Springer, New York, 2016.

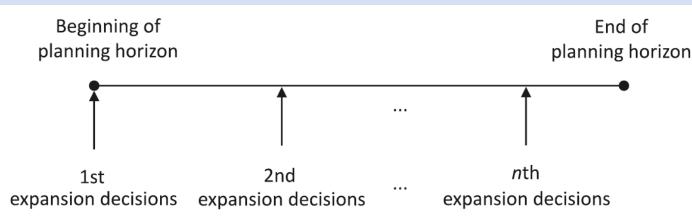
DTU Electrical Engineering, Technical University of Denmark

DTU

□ Static (single-stage) model



Remark: A potential extension is a dynamic (multi-stage) model.



Source of figures: A. J. Conejo, L. Baringo, JK, and A. S. Siddiqui, "Investment in electricity generation and transmission," Decision Making Under Uncertainty. Springer, New York, 2016.

DTU Electrical Engineering, Technical University of Denmark

- □ Static (single-stage) model
- □ A set of representative days
 - Input data: net-load profile over each day
 - > Advantage: including unit commitment constraints

DTU

□ A set of representative days

- Input data: net-load profile over each day
- > Advantage: including unit commitment constraints

How to cluster and achieve representative days?

[1] K. Poncelet, H. Hschle, E. Delarue, A. Virag, and W. Dhaeseleer, "Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems," *IEEE Trans. Power Syst.*, vol. 32, no. 3, pp. 1936–1948, May 2017.

[2] Y. Liu, R. Sioshansi, and A. J. Conejo, "Hierarchical clustering to find representative operating periods for capacityexpansion modeling," *IEEE Trans. Power Syst.*, vol. 33, no. 3, pp. 3029–3039, May 2018.

[3] D. A. Tejada-Arango, M. Domeshek, S. Wogrin, and E. Centeno, "Enhanced representative days and system states modeling for energy storage investment analysis," *IEEE Trans. Power Syst.*, vol. 33, no. 6, pp. 6534–6544, Nov. 2018.

DTU Electrical Engineering, Technical University of Denmark

□ Long-term uncertainty:

□ Short-term uncertainty:

DTU Electrical Engineering, Technical University of Denmark

□ Long-term uncertainty:

- Demand growth uncertainty only,
- Characterized by a set of scenarios

□ Short-term uncertainty:

Long-term uncertainty:

- Demand growth uncertainty only,
- Characterized by a set of scenarios

□ Short-term uncertainty:

- Renewable uncertainty only
- Characterized by distributionally robust optimization
- The renewable forecast for each uncertain source under long-term scenario s, representative day r, and hour t is

$$\mathbf{m}_{srt} + \gamma_{srt}$$

A random variable for forecast error

DTU Electrical Engineering, Technical University of Denmark

Mean of forecas

□ Ambiguity set under long-term scenario *s*, day *r*, and hour *t* is

$$\mathcal{P}_{srt} = \{ \mathbb{P} \in \Psi_{srt}(\mathbb{R}^{|Z|}) : \mathbb{E}(\gamma) = \mu_{srt}, \mathbb{E}(\gamma^{\top}\gamma) = \Sigma_{srt} \}$$

DTU Electrical Engineering, Technical University of Denmark

$$\mathcal{P}_{srt} = \{ \mathbb{P} \in \Psi_{srt}(\mathbb{R}^{|Z|}) : \mathbb{E}(\gamma) = \mu_{srt}, \mathbb{E}(\gamma^{\top}\gamma) = \Sigma_{srt} \}$$

$$\swarrow$$
Ambiguity set

Number of uncertain sources

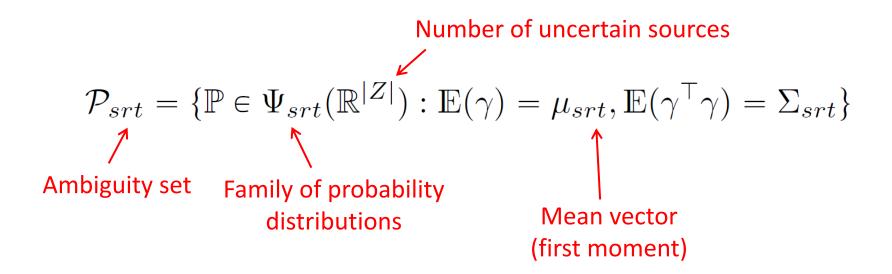
$$\mathcal{P}_{srt} = \{ \mathbb{P} \in \Psi_{srt}(\mathbb{R}^{|Z|}) : \mathbb{E}(\gamma) = \mu_{srt}, \mathbb{E}(\gamma^{\top}\gamma) = \Sigma_{srt} \}$$

$$\swarrow$$
Ambiguity set

Number of uncertain sources

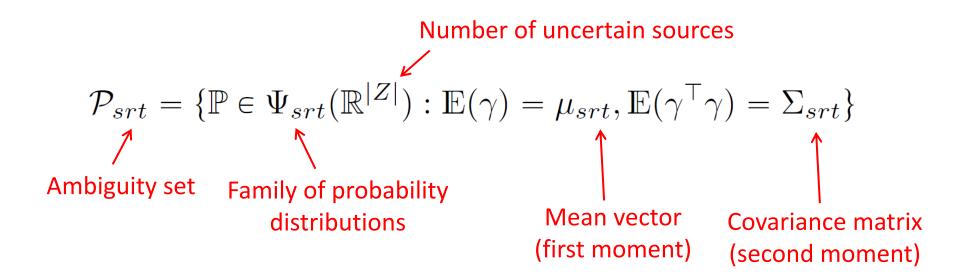
$$\mathcal{P}_{srt} = \{ \mathbb{P} \in \Psi_{srt}(\mathbb{R}^{|Z|}) : \mathbb{E}(\gamma) = \mu_{srt}, \mathbb{E}(\gamma^{\top}\gamma) = \Sigma_{srt} \}$$

$$\bigwedge$$
Ambiguity set Family of probability
distributions



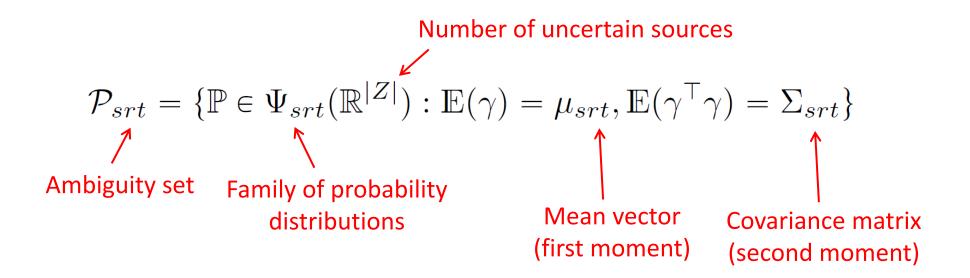
Model: Uncertainty

□ Ambiguity set under long-term scenario *s*, day *r*, and hour *t* is



Model: Uncertainty

□ Ambiguity set under long-term scenario *s*, day *r*, and hour *t* is



Remark: We consider the first <u>two</u> moments only (i.e., mean and variance), whose values are <u>exact</u>!

Model

Variables and their dependencies to long- and short-term uncertainties:

Variable	Туре	Dependent to the long-term uncertainty?	Dependent to the short-term uncertainty?
Expansion (y)	Binary	No	No
Commitment status (x)	Binary	Yes	No
Start-up (u)	Binary	Yes	No
Production (p)	Continuous	Yes	Yes

Note: "No" means there exists a non-anticipativity constraint.

Minimize expected social cost

Subject to

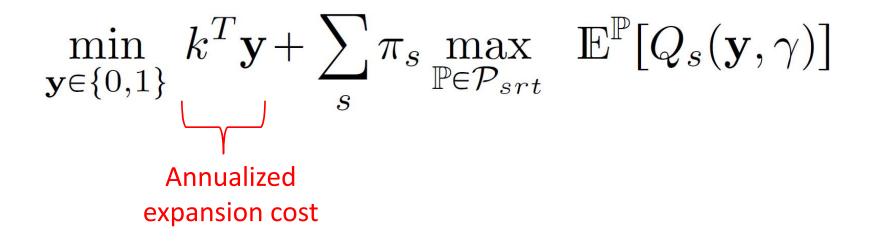
Expansion constraints (expansion options are discrete)

Operational unit commitment constraints (including both regular and chance constraints)

$$\min_{\mathbf{y} \in \{0,1\}} k^T \mathbf{y} + \sum_{s} \pi_s \max_{\mathbb{P} \in \mathcal{P}_{srt}} \mathbb{E}^{\mathbb{P}}[Q_s(\mathbf{y}, \gamma)]$$

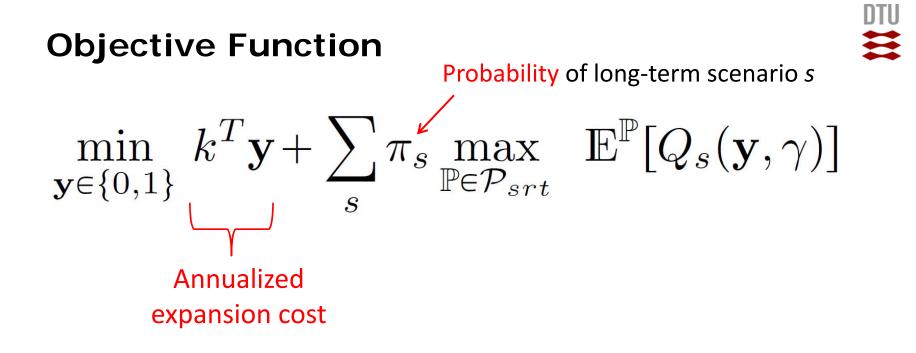
$$Q_s(\mathbf{y}, \gamma) = \sum_{rt} \min_{\mathbf{p}, \mathbf{x}, \mathbf{u}} w_r(c^T \mathbf{p}_{srt}(\gamma) + h^T \mathbf{u}_{srt})$$

Objective Function



Where

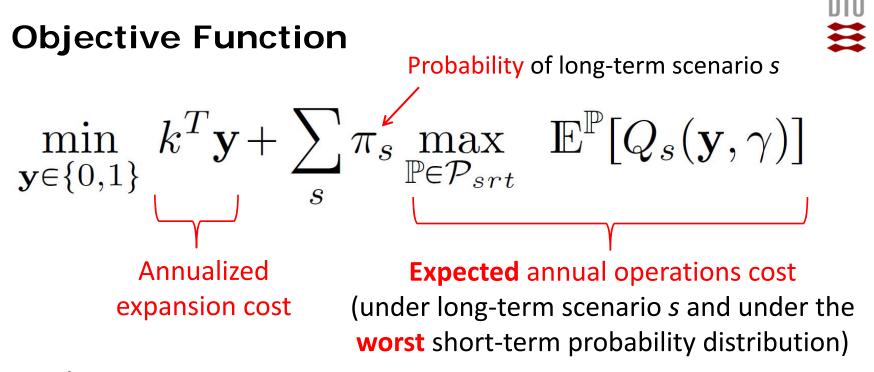
$$Q_s(\mathbf{y}, \gamma) = \sum_{rt} \min_{\mathbf{p}, \mathbf{x}, \mathbf{u}} w_r(c^T \mathbf{p}_{srt}(\gamma) + h^T \mathbf{u}_{srt})$$



$$Q_s(\mathbf{y}, \gamma) = \sum_{rt} \min_{\mathbf{p}, \mathbf{x}, \mathbf{u}} w_r(c^T \mathbf{p}_{srt}(\gamma) + h^T \mathbf{u}_{srt})$$

DTU Electrical Engineering, Technical University of Denmark

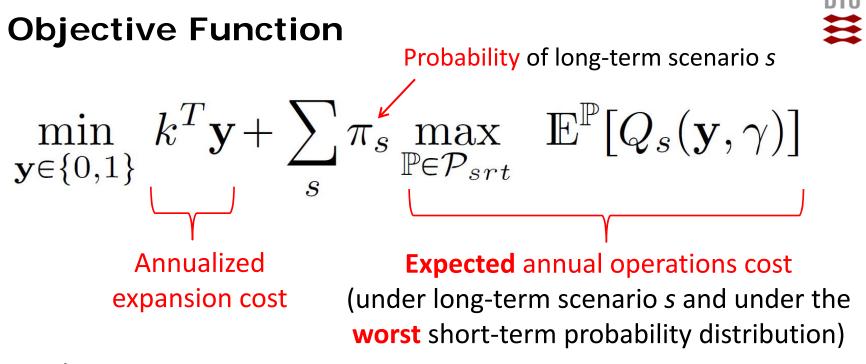
Jalal Kazempour 16/34



$$Q_s(\mathbf{y}, \gamma) = \sum_{rt} \min_{\mathbf{p}, \mathbf{x}, \mathbf{u}} w_r(c^T \mathbf{p}_{srt}(\gamma) + h^T \mathbf{u}_{srt})$$

DTU Electrical Engineering, Technical University of Denmark

Jalal Kazempour 16/34



Weighting factor of representative day r

$$Q_{s}(\mathbf{y}, \gamma) = \sum_{rt} \min_{\mathbf{p}, \mathbf{x}, \mathbf{u}} w_{r}(c^{T}\mathbf{p}_{srt}(\gamma) + h^{T}\mathbf{u}_{srt})$$
Production Start-up cost
Cost
DTU Electrical Engineering, Technical University of Denmark
$$M_{r}(c^{T}\mathbf{p}_{srt}(\gamma) + h^{T}\mathbf{u}_{srt})$$
Production Start-up cost
Cost
Jalal Kazempour

16/34

Regular Constraints

$$\begin{aligned} x_{isrt} \leqslant \mathbf{y}_{i}, \quad \forall i \in G^{C}, s, r, t \\ -\mathbf{x}_{sr(t-1)} + \mathbf{x}_{srt} - \mathbf{x}_{sr\tau} \leqslant 0, \\ \forall \tau \in \{t, ..., MU + t - 1\}, \forall s, r, t \\ \mathbf{x}_{sr(t-1)} - \mathbf{x}_{srt} + \mathbf{x}_{sr\tau} \leqslant 1, \\ \forall \tau \in \{t, ..., MD + t - 1\}, \forall s, r, t \\ -\mathbf{x}_{sr(t-1)} + \mathbf{x}_{srt} - \mathbf{u}_{srt} \leqslant 0, \quad \forall s, r, t \\ -\mathbf{x}_{sr(t-1)} + \mathbf{x}_{srt} - \mathbf{u}_{srt} \leqslant 0, \quad \forall s, r, t \\ \mathbf{y}_{t} \in \{0, 1\}, \quad \forall s, r, t. \end{aligned}$$
Production of candidate units (if expansion=0, then commitment=0)
$$Minimum up- and down-time constraints of units (both existing and candidate)
$$Start-up \ constraint \ of \ units (both existing and candidate) \\ Nodal \ power \ balance \\ \mathbf{x}_{srt}, \mathbf{u}_{srt} \in \{0, 1\}, \quad \forall s, r, t. \end{aligned}$$$$

Expansion, commitment and start-up variables are all binaries!

$$\begin{array}{l} \textbf{Chance Constraints} \qquad \begin{array}{l} \textbf{Confidence level} \\ & \underset{\mathbb{P} \in \mathcal{P}_{srt}}{\min} \mathbb{P}[p_{isrt}(\gamma) \leqslant \overline{p}_{i}x_{isrt}] \geqslant 1 - \epsilon_{i}, \quad \forall i, s, r, t \\ & \underset{\mathbb{P} \in \mathcal{P}_{srt}}{\min} \mathbb{P}[p_{isrt}(\gamma) \geqslant \underline{p}_{i}x_{isrt}] \geqslant 1 - \epsilon_{i}, \quad \forall i, s, r, t \\ & \underset{\mathbb{P} \in \mathcal{P}_{srt}}{\min} \mathbb{P}[p_{isrt}(\gamma) - p_{isr(t-1)}(\gamma) \leqslant \overline{r}_{i} \; x_{isr(t-1)} \\ & + rs_{i}(1 - x_{isr(t-1)})] \geqslant 1 - \epsilon_{i}, \; \forall i, s, r, t \\ & \underset{\mathbb{P} \in \mathcal{P}_{srt}}{\min} \mathbb{P}[p_{isr(t-1)}(\gamma) - p_{isrt}(\gamma) \leqslant \underline{r}_{i} \; x_{isrt} \\ & + rs_{i}(1 - x_{isrt})] \geqslant 1 - \epsilon_{i}, \; \forall i, s, r, t \\ & \underset{\mathbb{P} \in \mathcal{P}_{srt}}{\min} \mathbb{P}[H_{l}^{G}\mathbf{p}_{srt}(\gamma) + H_{l}^{W}(\mathbf{m}_{srt} + \gamma) \\ & -H_{l}^{D}\mathbf{d}_{srt} \leqslant \overline{f}_{l}] \geqslant 1 - \epsilon_{l}, \; \forall l, s, r, t \\ & \underset{\mathbb{P} \in \mathcal{P}_{srt}}{\min} \mathbb{P}[H_{l}^{G}\mathbf{p}_{srt}(\gamma) + H_{l}^{W}(\mathbf{m}_{srt} + \gamma) \\ & -H_{l}^{D}\mathbf{d}_{srt} \geqslant -\overline{f}_{l}] \geqslant 1 - \epsilon_{l}, \; \forall l, s, r, t. \end{array}$$

$$\begin{array}{c} \mbox{Chance Constraints} & \mbox{Confidence level} \\ & \mbox{in and max} \\ & \mbox{min } \mathbb{P}[p_{isrt}(\gamma) \leqslant \overline{p}_i x_{isrt}] \geqslant 1 - \epsilon_i, \quad \forall i, s, r, t \\ & \mbox{min } \mathbb{P}[p_{isrt}(\gamma) \geqslant \underline{p}_i x_{isrt}] \geqslant 1 - \epsilon_i, \quad \forall i, s, r, t \\ & \mbox{min } \mathbb{P}[p_{isrt}(\gamma) - p_{isr(t-1)}(\gamma) \leqslant \overline{r}_i \; x_{isr(t-1)} \\ & + rs_i(1 - x_{isr(t-1)})] \geqslant 1 - \epsilon_i, \quad \forall i, s, r, t \\ & \mbox{min } \mathbb{P}[p_{isr(t-1)}(\gamma) - p_{isrt}(\gamma) \leqslant \underline{r}_i \; x_{isrt} \\ & + rs_i(1 - x_{isrt})] \geqslant 1 - \epsilon_i, \quad \forall i, s, r, t \\ & \mbox{min } \mathbb{P}[H_l^G \mathbf{p}_{srt}(\gamma) + H_l^W(\mathbf{m}_{srt} + \gamma) \\ & -H_l^D \mathbf{d}_{srt} \leqslant \overline{f}_l] \geqslant 1 - \epsilon_l, \; \forall l, s, r, t \\ & \mbox{min } \mathbb{P}[H_l^G \mathbf{p}_{srt}(\gamma) + H_l^W(\mathbf{m}_{srt} + \gamma) \\ & -H_l^D \mathbf{d}_{srt} \leqslant -\overline{f}_l] \geqslant 1 - \epsilon_l, \; \forall l, s, r, t. \end{array} \right) \\ \end{array}$$

Remark: We consider individual (not joint) chance constraints!

DTH

Outline

✓ Background

✓ Model

✓ Solution Strategy

- ✓ Numerical Study
- ✓ Conclusion and Future Work

For computational simplicity, we relax operational-stage binary variables, but in a tight manner [1]-[2].

[1] B. Hua and R. Baldick, "A convex primal formulation for convex hull pricing," *IEEE Trans. Power Syst.*, vol. 32, no. 5, pp. 3814–3823, Sep. 2017.

[2] S. Kasina, S.Wogrin, and B. F. Hobbs, "A comparison of unit commitment approximations for generation production costing," *Johns Hopkins Univ.*, Baltimore, MD, USA, Working Paper, Nov. 2014.

For computational simplicity, we relax operational-stage binary variables, but in a tight manner [1]-[2].

$$0 \leq \mathbf{x}_{srt} \leq 1; \quad 0 \leq \mathbf{u}_{srt} \leq 1, \quad \forall s, r, t$$

While including <u>additional</u> constraints in the problem (in form of chance constraints), tightening the ramping constraints!

[1] B. Hua and R. Baldick, "A convex primal formulation for convex hull pricing," *IEEE Trans. Power Syst.*, vol. 32, no. 5, pp. 3814–3823, Sep. 2017.

[2] S. Kasina, S.Wogrin, and B. F. Hobbs, "A comparison of unit commitment approximations for generation production costing," *Johns Hopkins Univ.*, Baltimore, MD, USA, Working Paper, Nov. 2014.

For computational simplicity, we relax operational-stage binary variables, but in a tight manner [1]-[2].

$$0 \leq \mathbf{x}_{srt} \leq 1; \quad 0 \leq \mathbf{u}_{srt} \leq 1, \quad \forall s, r, t$$

While including <u>additional</u> constraints in the problem (in form of chance constraints), tightening the ramping constraints!

Remark: Expansion decisions are still binary variables!

[1] B. Hua and R. Baldick, "A convex primal formulation for convex hull pricing," *IEEE Trans. Power Syst.*, vol. 32, no. 5, pp. 3814–3823, Sep. 2017.

[2] S. Kasina, S.Wogrin, and B. F. Hobbs, "A comparison of unit commitment approximations for generation production costing," *Johns Hopkins Univ.*, Baltimore, MD, USA, Working Paper, Nov. 2014.

To reduce the complexity of the problem, the recourse actions are approximated to linear decision rules (affine policy) [1].

[1] D. Kuhn, W. Wiesemann, and A. Georghiou, "Primal and dual linear decision rules in stochastic and robust optimization," *Math. Program.*, vol. 130, no. 1, pp. 177–209, 2011

To reduce the complexity of the problem, the recourse actions are approximated to linear decision rules (affine policy) [1].

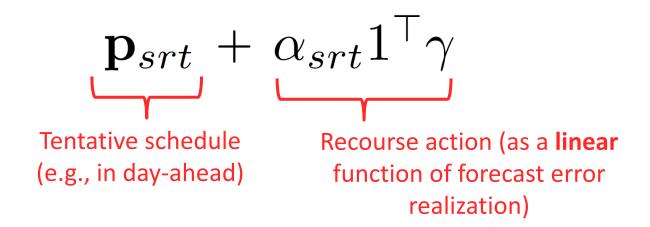
Production of each conventional unit is:

 $\mathbf{p}_{srt} + \alpha_{srt} \mathbf{1}^{\top} \gamma$

[1] D. Kuhn, W. Wiesemann, and A. Georghiou, "Primal and dual linear decision rules in stochastic and robust optimization," *Math. Program.*, vol. 130, no. 1, pp. 177–209, 2011

To reduce the complexity of the problem, the recourse actions are approximated to linear decision rules (affine policy) [1].

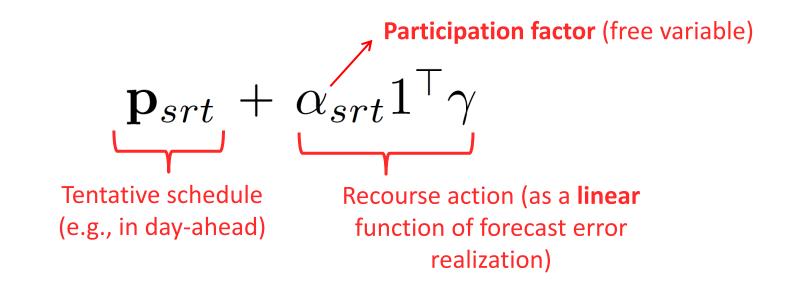
Production of each conventional unit is:



[1] D. Kuhn, W. Wiesemann, and A. Georghiou, "Primal and dual linear decision rules in stochastic and robust optimization," *Math. Program.*, vol. 130, no. 1, pp. 177–209, 2011

To reduce the complexity of the problem, the recourse actions are approximated to linear decision rules (affine policy) [1].

Production of each conventional unit is:



[1] D. Kuhn, W. Wiesemann, and A. Georghiou, "Primal and dual linear decision rules in stochastic and robust optimization," *Math. Program.*, vol. 130, no. 1, pp. 177–209, 2011

Objective function can be reformulated in an exact way to a minimization problem [1]:

$$\min_{\mathbf{y},\mathbf{p},\alpha,\mathbf{x},\mathbf{u}} k^T \mathbf{y} + \sum_{s,r,t} \pi_s w_r \{ c^T \mathbf{p}_{srt} + h^T \mathbf{u}_{srt} \}$$

[1] E. Delage and Y. Ye, "Distributionally robust optimization under moment uncertainty with application to data-driven problems," *Oper. Res.*, vol. 58, pp. 595–612, 2010.

Objective function can be reformulated in an exact way to a minimization problem [1]:

$$\min_{\mathbf{y},\mathbf{p},\alpha,\mathbf{x},\mathbf{u}} k^T \mathbf{y} + \sum_{s,r,t} \pi_s w_r \{ c^T \mathbf{p}_{srt} + h^T \mathbf{u}_{srt} \}$$

Nodal power balance equalities can be reformulated in an exact way to a minimization problem [1]:

$$\mathbf{1}^{\top} \alpha_{srt} = -\mathbf{1}, \quad \forall s, r, t$$
$$\mathbf{1}^{\top} \mathbf{p}_{srt} + \mathbf{1}^{\top} \mathbf{m}_{srt} = \mathbf{1}^{\top} \mathbf{d}_{srt}, \quad \forall s, r, t$$

[1] E. Delage and Y. Ye, "Distributionally robust optimization under moment uncertainty with application to data-driven problems," *Oper. Res.*, vol. 58, pp. 595–612, 2010.

Each chance constraint in a generic form of

$$\min_{\mathbb{P}\in\mathcal{P}} \mathbb{P}\left(v^{\top}\gamma \leqslant b\right) \ge 1-\epsilon$$

can be reformulated in an exact way, resulting in a semi-definite program (SDP) [1].

[1] E. Delage and Y. Ye, "Distributionally robust optimization under moment uncertainty with application to data-driven problems," *Oper. Res.*, vol. 58, pp. 595–612, 2010.

Each chance constraint in a generic form of

$$\min_{\mathbb{P}\in\mathcal{P}} \mathbb{P}\left(v^{\top}\gamma \leqslant b\right) \ge 1-\epsilon$$

can be reformulated in an exact way, resulting in a semi-definite program (SDP) [1].

□ Under assumptions of having individual chance constraints, and two exact moments only, each individual chance constraints can be reformulated as a second-order cone constraint [1]:

$$v^{\top}\mu + \sqrt{\frac{1-\epsilon}{\epsilon}}\sqrt{v^{\top}\Sigma v} \leqslant b$$

[1] E. Delage and Y. Ye, "Distributionally robust optimization under moment uncertainty with application to data-driven problems," *Oper. Res.*, vol. 58, pp. 595–612, 2010.

The resulting model is a mixed-integer second-order cone problem!

DTU Electrical Engineering, Technical University of Denmark

Jalal Kazempour 23/34

Outline

✓ Background

✓ Model

✓ Solution Strategy

✓ Numerical Study

✓ Conclusion and Future Work

Numerical Study

□ IEEE 118-bus test case:

- Existing units: 19 conventional units and 2 wind farms
- Candidate units: 22 conventional units (four different technologies: nuclear, coal, gas, CCGT)
- > 99 demands, all are inflexible
- 186 transmission lines
- Two equiprobable long-term (demand growth) scenarios
- Under each long-term scenario, the wind penetration (i.e., total wind divided by total load) is 35%

Numerical Study

Input data to model short-term uncertainty

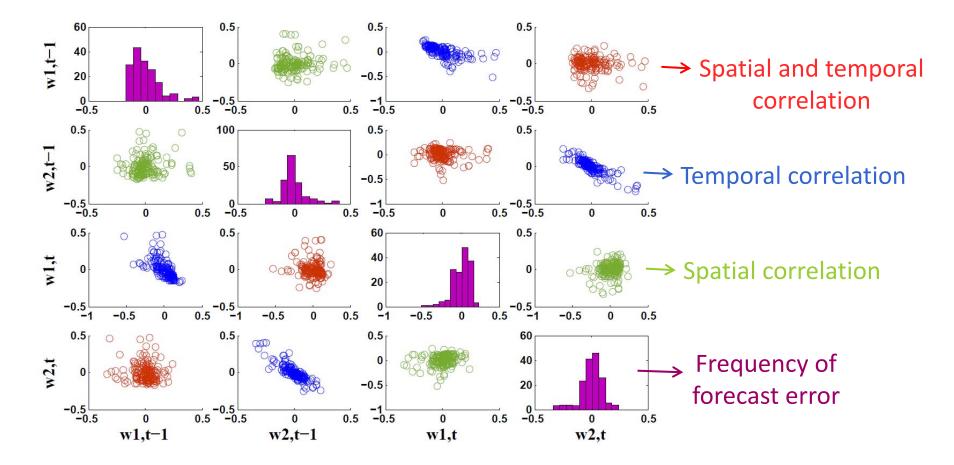
□ Hourly wind data (in per-unit) for 10,000 days:

 Wind data for 5,000 days: used for in-sample study to train the model, clustered in 10 representative days

 Wind data for remaining 5,000 days: used for out-of-sample analysis, again clustered in 10 representative days

Correlation

An example for spatial and temporal correlation of forecast error between 2 wind farms (w1 and w2) and between 2 hours (t-1 and t)



Remark 1: We assume the same value for ϵ for all chance constraints, and refer to $(1 - \epsilon)$ as *confidence level*.

Remark 1: We assume the same value for ϵ for all chance constraints, and refer to $(1 - \epsilon)$ as *confidence level*.

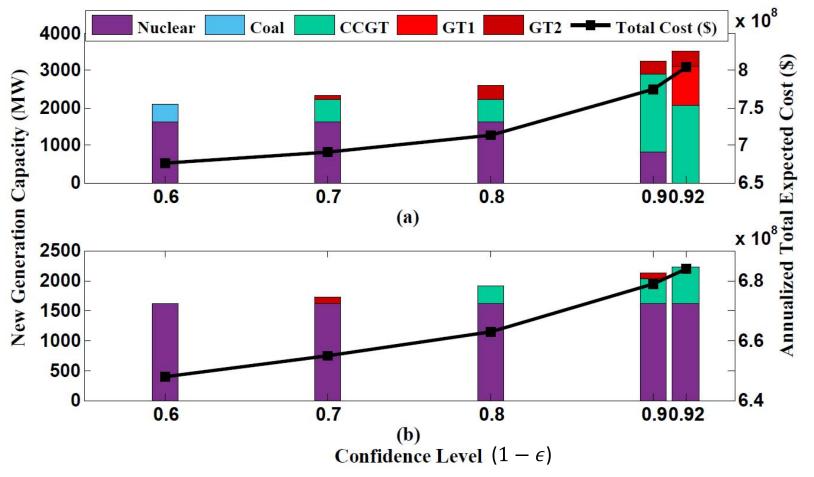
Remark 2: As a benchmark, we consider a chance-constrained model, where the short-term uncertainty follows a normal distribution, with the identical values for the two moments to those in the distributionally robust problem.

This model also results in a mixed-integer second-order cone program [1].

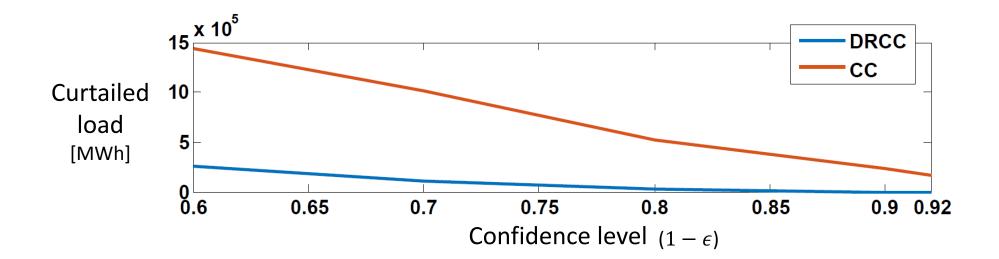
[1] D. Bienstock, M. Chertkov, and S. Harnett, "Chance-constrained optimal power flow: Risk-aware network control under uncertainty," *SIAM Review*, vol. 56, no. 3, pp. 461–495, 2014.

In-sample Results

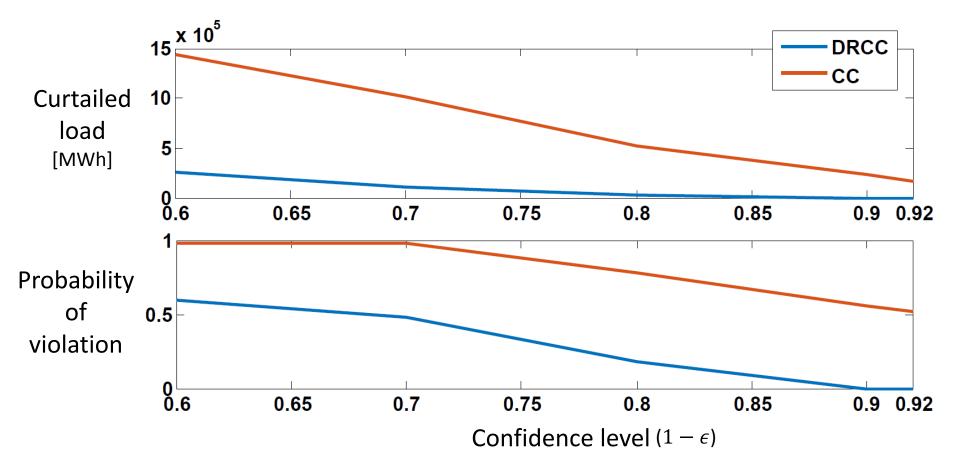
- > **Upper plot:** distributionally robust chance-constrained model
- Lower plot: benchmark (chance-constrained model with normal distribution)



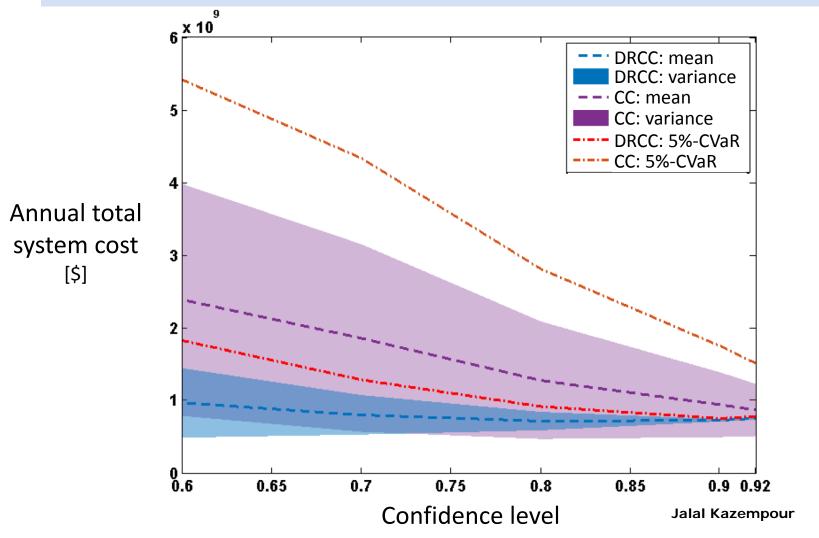
- > DRCC: distributionally robust chance-constrained model
- CC: benchmark (chance-constrained model with normal distribution)



- > DRCC: distributionally robust chance-constrained model
- CC: benchmark (chance-constrained model with normal distribution)



- DRCC: distributionally robust chance-constrained model
- > CC: benchmark (chance-constrained model with normal distribution)



Recall that the long-term uncertainty (demand growth) is modeled by a couple of scenarios!

Is the current model robust against the long-term uncertainty?

Recall that the long-term uncertainty (demand growth) is modeled by a couple of scenarios!

Is the current model robust against the long-term uncertainty? No!

Recall that the long-term uncertainty (demand growth) is modeled by a couple of scenarios!

Is the current model robust against the long-term uncertainty? No!

Case A: the two demand growth realizations are the **same** as the long-term scenarios! **Case B:** the two demand growth realizations are **5% higher** than the long-term scenarios!



Computational Issues

- ✓ All simulations are run on an Intel(R) Xeon(R) E5-1650 with 12 processors clocking at 3.50 GHz and 32 GB of RAM.
- ✓ The source code implemented in Matlab using YALMIP and solved by Gurobi 7.5.1. It will be publicly shared soon!
- Depending on the confidence level, the computational time is about 90-120 minutes.

Outline

- ✓ Background
- ✓ Model
- ✓ Solution Strategy
- ✓ Numerical Study
- ✓ Conclusion and Future Work

Conclusion

➢ If the probability distribution of an uncertain source in generation expansion problem is truly unknown, the distributionally robust optimization is able to provide an appropriate decision-making tool.

A trade-off between system cost and reliability can be achieved by using chance constraints.

Potential Future Work

- > To robustify the model against the long-term uncertainty
- To consider inexact moments and/or joint chance constraints (resulting in an SDP)
- To compare the performance of metric-based vs. momentbased distributionally robust models in an expansion model
- To develop a distributionally robust game-theoretic model for market-based expansion problem (potentially with different values for moments/distance among players)

Thanks for your attention!

Email: seykaz@elektro.dtu.dk

DTU Electrical Engineering, Technical University of Denmark

Jalal Kazempour