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Today is the first day of Persian calendar (and the first day of Spring)!
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This is happening in Denmark!
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• High uncertainty in supply 

• Increased need for operational flexibility in the power systems 

In 2017:

• 43.6% of electricity

• consumption 
covered by wind 

• 1,460 hours of 
excess wind Co
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The Keywords of This Talk
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• Generation expansion planning problem 

• Uncertainty

• Operational limits

 Long‐term uncertainty (e.g., demand growth, regulation policies)

 Short‐term uncertainty (e.g., wind production, demand)

 Unit commitment constraints
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• The true probability distribution of uncertainty (especially
short‐term uncertainty) is unknown!
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• The true probability distribution of uncertainty (especially
short‐term uncertainty) is unknown!

• By adding more renewables, the net‐load profile becomes
more and more volatile and uncertain! Can we still ignore
the unit commitment constraints in expansion problems?

 If not, the load duration curve (LDC)‐based models may no longer be
appropriate [1]‐[2].

[1] B. S. Palmintier and M. D. Webster, “Impact of operational flexibility on electricity generation planning
with renewable and carbon targets,” IEEE Trans. Sustain. Energy, vol. 7, no. 2, pp. 672–684, Apr. 2016.

[2] B. Hua, R. Baldick, and J. Wang, “Representing operational flexibility in generation expansion planning
through convex relaxation of unit commitment,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2272–2281,
Mar. 2018.
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How can the short‐term uncertainty be properly modeled while
the true probability distribution is unknown?

In a generation expansion problem:
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How can the short‐term uncertainty be properly modeled while
the true probability distribution is unknown?

How to ensure that the unit commitment constraints are
properly taken into account while maintaining the
computational tractability?

How important is to model the spatial and temporal
correlations of renewable uncertainty?

In a generation expansion problem:
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Alternatives for modeling uncertainty:
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Alternatives for modeling uncertainty:

 Stochastic programming

 Given a finite set of scenarios, it optimizes the problem in expectation.

 A risk metric (e.g., CVaR) can be incorporated.

To be able to model all potential probability distributions of the
short‐term uncertainty, a significant (or even infinite) number
of scenarios is required!
 Too many scenarios

 A reduced number of scenarios

Computational issues

Weak out‐of‐sample performance
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Alternatives for modeling uncertainty:

 Robust optimization

 Given an uncertainty set, it optimizes the problem for the
worst‐case realization in the set, while keeping the problem
feasible for the entire set.

 Potentially results in a too conservative solution!
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Alternatives for modeling uncertainty:

 Distributionally robust optimization

Given a family of probability distributions
(the so‐called “ambiguity set”) which
includes infinite number of distributions,

Source: MIT.edu/vanparys
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Alternatives for modeling uncertainty:

 Distributionally robust optimization

Given a family of probability distributions
(the so‐called “ambiguity set”) which
includes infinite number of distributions,

 it optimizes the problem in expectation for the worst‐case
probability distribution in the ambiguity set.

Source: MIT.edu/vanparys

 The conservativeness can be adjusted by having chance
constraints.
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 Moment‐based ambiguity set

It includes all probability distributions with the same
moments (e.g., mean and variance).

 Metric‐based ambiguity set

It includes all probability distributions whose distance from
an empirical distribution is lower than or equal to a given
value.

Many interesting talks are available at:
“Distributionally Robust Optimization” Seminar, Banff International Research Station, May
2018. https://www.birs.ca/events/2018/5‐day‐workshops/18w5102/schedule

Among others, the two common alternatives in the literature for
building an ambiguity set are:
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 Static (single‐stage) model

Source of figures: A. J. Conejo, L. Baringo, JK, and A. S. Siddiqui, “Investment in electricity generation and transmission,” 
Decision Making Under Uncertainty. Springer, New York, 2016.
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 Static (single‐stage) model

Source of figures: A. J. Conejo, L. Baringo, JK, and A. S. Siddiqui, “Investment in electricity generation and transmission,” 
Decision Making Under Uncertainty. Springer, New York, 2016.

Remark: A potential extension is a dynamic (multi‐stage) model.
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 A set of representative days

 Input data: net‐load profile over each day

 Advantage: including unit commitment constraints
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 Static (single‐stage) model

 A set of representative days

 Input data: net‐load profile over each day

 Advantage: including unit commitment constraints

[1] K. Poncelet, H. Hschle, E. Delarue, A. Virag, and W. Dhaeseleer, “Selecting representative days for capturing the
implications of integrating intermittent renewables in generation expansion planning problems,” IEEE Trans. Power Syst.,
vol. 32, no. 3, pp. 1936–1948, May 2017.

[2] Y. Liu, R. Sioshansi, and A. J. Conejo, “Hierarchical clustering to find representative operating periods for capacity-
expansion modeling,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3029–3039, May 2018.

[3] D. A. Tejada-Arango, M. Domeshek, S. Wogrin, and E. Centeno, “Enhanced representative days and system states
modeling for energy storage investment analysis,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6534–6544, Nov. 2018.

How to cluster and achieve representative days?
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 Long‐term uncertainty:

 Short‐term uncertainty:
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 Long‐term uncertainty:

 Demand growth uncertainty only,

 Characterized by a set of scenarios

 Short‐term uncertainty:
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Model: Uncertainty
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 Long‐term uncertainty:

 Demand growth uncertainty only,

 Characterized by a set of scenarios

 Short‐term uncertainty:
 Renewable uncertainty only

 Characterized by distributionally robust optimization

 The renewable forecast for each uncertain source under
long‐term scenario s, representative day r, and hour t is

Mean of forecast
A random variable for 

forecast error
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 Ambiguity set under long‐term scenario s, day r, and hour t is
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 Ambiguity set under long‐term scenario s, day r, and hour t is
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Number of uncertain sources
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 Ambiguity set under long‐term scenario s, day r, and hour t is

Ambiguity set Family of probability 
distributions

Number of uncertain sources

Mean vector 
(first moment)

Covariance matrix 
(second moment)

Remark: We consider the first two moments only (i.e., mean and
variance), whose values are exact!
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Variables and their dependencies to long‐ and short‐term
uncertainties:

Variable Type
Dependent to the 

long‐term 
uncertainty?

Dependent to the 
short‐term 
uncertainty?

Expansion (y) Binary No No
Commitment
status (x) Binary Yes No

Start‐up (u) Binary Yes No

Production (p) Continuous Yes Yes

Note: “No” means there exists a non‐anticipativity constraint.
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Minimize expected social cost

Subject to

Expansion constraints
(expansion options are discrete)

Operational unit commitment constraints
(including both regular and chance constraints)
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Annualized 
expansion cost

Probability of long‐term scenario s

Expected annual operations cost 
(under long‐term scenario s and under the 
worst short‐term probability distribution)

Where
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Annualized 
expansion cost

Where

Production 
cost

Start‐up cost

Weighting factor of representative day r

Expected annual operations cost 
(under long‐term scenario s and under the 
worst short‐term probability distribution)

Probability of long‐term scenario s
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Minimum up‐ and down‐
time constraints of units
(both existing and candidate)

Production of candidate units 
(if expansion=0, then commitment= 0)

Start‐up constraint of units 
(both existing and candidate)

Nodal power balance 

Expansion, commitment and start‐up variables 
are all binaries!
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Worst 
distribution

Confidence level
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Worst 
distribution

Confidence level

Min and max 
production levels

of units 
(both existing and candidate)

Ramping limits of units
(both existing and candidate)

Capacity limits of 
transmission lines
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Worst 
distribution

Confidence level

Min and max 
production levels

of units 
(both existing and candidate)

Ramping limits of units
(both existing and candidate)

Capacity limits of 
transmission lines

Remark: We consider individual (not joint) chance constraints!
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For computational simplicity, we relax operational‐stage binary
variables, but in a tight manner [1]‐[2].

[1] B. Hua and R. Baldick, “A convex primal formulation for convex hull pricing,” IEEE Trans. Power Syst., vol. 32, no. 5,
pp. 3814–3823, Sep. 2017.

[2] S. Kasina, S.Wogrin, and B. F. Hobbs, “A comparison of unit commitment approximations for generation production
costing,” Johns Hopkins Univ., Baltimore, MD, USA, Working Paper, Nov. 2014.
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pp. 3814–3823, Sep. 2017.

[2] S. Kasina, S.Wogrin, and B. F. Hobbs, “A comparison of unit commitment approximations for generation production
costing,” Johns Hopkins Univ., Baltimore, MD, USA, Working Paper, Nov. 2014.

While including additional constraints in the problem (in form of
chance constraints), tightening the ramping constraints!
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For computational simplicity, we relax operational‐stage binary
variables, but in a tight manner [1]‐[2].

[1] B. Hua and R. Baldick, “A convex primal formulation for convex hull pricing,” IEEE Trans. Power Syst., vol. 32, no. 5,
pp. 3814–3823, Sep. 2017.

[2] S. Kasina, S.Wogrin, and B. F. Hobbs, “A comparison of unit commitment approximations for generation production
costing,” Johns Hopkins Univ., Baltimore, MD, USA, Working Paper, Nov. 2014.

While including additional constraints in the problem (in form of
chance constraints), tightening the ramping constraints!

Remark: Expansion decisions are still binary variables!
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To reduce the complexity of the problem, the recourse actions 
are approximated to linear decision rules (affine policy) [1].

[1] D. Kuhn, W. Wiesemann, and A. Georghiou, “Primal and dual linear decision rules in stochastic and robust
optimization,” Math. Program., vol. 130, no. 1, pp. 177–209, 2011
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To reduce the complexity of the problem, the recourse actions 
are approximated to linear decision rules (affine policy) [1].

[1] D. Kuhn, W. Wiesemann, and A. Georghiou, “Primal and dual linear decision rules in stochastic and robust
optimization,” Math. Program., vol. 130, no. 1, pp. 177–209, 2011

Production of each conventional unit is:

Tentative schedule
(e.g., in day‐ahead)

Recourse action (as a linear
function of forecast error 

realization)

Participation factor (free variable)
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Objective function can be reformulated in an exact way to a
minimization problem [1]:

[1] E. Delage and Y. Ye, “Distributionally robust optimization under moment uncertainty with application to data-driven
problems,” Oper. Res., vol. 58, pp. 595–612, 2010.
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Objective function can be reformulated in an exact way to a
minimization problem [1]:

[1] E. Delage and Y. Ye, “Distributionally robust optimization under moment uncertainty with application to data-driven
problems,” Oper. Res., vol. 58, pp. 595–612, 2010.

Nodal power balance equalities can be reformulated in an exact
way to a minimization problem [1]:
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Each chance constraint in a generic form of

[1] E. Delage and Y. Ye, “Distributionally robust optimization under moment uncertainty with application to data-driven
problems,” Oper. Res., vol. 58, pp. 595–612, 2010.

can be reformulated in an exact way, resulting in a semi‐definite
program (SDP) [1].
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Each chance constraint in a generic form of

[1] E. Delage and Y. Ye, “Distributionally robust optimization under moment uncertainty with application to data-driven
problems,” Oper. Res., vol. 58, pp. 595–612, 2010.

can be reformulated in an exact way, resulting in a semi‐definite
program (SDP) [1].

 Under assumptions of having individual chance constraints,
and two exact moments only, each individual chance
constraints can be reformulated as a second‐order cone
constraint [1]:
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The resulting model is a 

mixed‐integer second‐order 
cone problem!
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 IEEE 118‐bus test case:

 Existing units: 19 conventional units and 2 wind farms

 Candidate units: 22 conventional units (four different
technologies: nuclear, coal, gas, CCGT)

 99 demands, all are inflexible

 186 transmission lines

 Two equiprobable long‐term (demand growth) scenarios

 Under each long‐term scenario, the wind penetration
(i.e., total wind divided by total load) is 35%
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Input data to model short‐term uncertainty

 Hourly wind data (in per‐unit) for 10,000 days:

• Wind data for 5,000 days:
used for in‐sample study to train the model, clustered in 10
representative days

• Wind data for remaining 5,000 days:
used for out‐of‐sample analysis, again clustered in 10
representative days
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An example for spatial and temporal correlation of forecast error
between 2 wind farms (w1 and w2) and between 2 hours (t‐1 and t)

Frequency of 
forecast error

Spatial correlation

Temporal correlation

Spatial and temporal 
correlation
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Remark 1: We assume the same value for for all chance
constraints, and refer to ( ) as confidence level.
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Remark 1: We assume the same value for for all chance
constraints, and refer to ( ) as confidence level.

Remark 2: As a benchmark, we consider a chance‐constrained
model, where the short‐term uncertainty follows a normal
distribution, with the identical values for the two moments to
those in the distributionally robust problem.

This model also results in a mixed‐integer second‐order cone
program [1].

[1] D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained optimal power flow: Risk-aware network control
under uncertainty,” SIAM Review, vol. 56, no. 3, pp. 461–495, 2014.
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 Upper plot: distributionally robust chance‐constrained model
 Lower plot: benchmark (chance‐constrained model with normal distribution)

( ) 
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 DRCC: distributionally robust chance‐constrained model
 CC: benchmark (chance‐constrained model with normal distribution)

Curtailed 
load 
[MWh]

Confidence level ( ) 



26 June 2015DTU Electrical Engineering, Technical University of Denmark

Out-of-sample Results

71 Jalal Kazempour                29/34

 DRCC: distributionally robust chance‐constrained model
 CC: benchmark (chance‐constrained model with normal distribution)

Curtailed 
load 
[MWh]

Confidence level

Probability 
of 

violation

( ) 
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 DRCC: distributionally robust chance‐constrained model
 CC: benchmark (chance‐constrained model with normal distribution)

Annual total 
system cost 

[$]

Confidence level

DRCC: variance
DRCC: mean

CC: mean
CC: variance
DRCC: 5%‐CVaR
CC: 5%‐CVaR

Jalal Kazempour                30/34
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Recall that the long‐term uncertainty (demand growth) is modeled by
a couple of scenarios!
 Is the current model robust against the long‐term uncertainty?

Jalal Kazempour                31/34
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Recall that the long‐term uncertainty (demand growth) is modeled by
a couple of scenarios!
 Is the current model robust against the long‐term uncertainty? No!

Jalal Kazempour                31/34
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Recall that the long‐term uncertainty (demand growth) is modeled by
a couple of scenarios!
 Is the current model robust against the long‐term uncertainty? No!

Annual total 
system cost 

[$]

Confidence level

Case A: the two demand growth realizations are the same as the long‐term scenarios! 
Case B: the two demand growth realizations are 5% higher than the long‐term scenarios! 

B: mean
B: variance
A: mean
A: variance

Jalal Kazempour                31/34
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 All simulations are run on an Intel(R) Xeon(R) E5‐1650 with 12
processors clocking at 3.50 GHz and 32 GB of RAM.

 The source code implemented in Matlab using YALMIP and solved by
Gurobi 7.5.1. It will be publicly shared soon!

 Depending on the confidence level, the computational time is about
90‐120 minutes.

Jalal Kazempour                32/34
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 If the probability distribution of an uncertain
source in generation expansion problem is truly
unknown, the distributionally robust optimization
is able to provide an appropriate decision‐making
tool.

A trade‐off between system cost and reliability can
be achieved by using chance constraints.
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Potential Future Work
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 To robustify the model against the long‐term uncertainty

 To consider inexact moments and/or joint chance constraints
(resulting in an SDP)

 To compare the performance of metric‐based vs. moment‐
based distributionally robust models in an expansion model

 To develop a distributionally robust game‐theoretic model for
market‐based expansion problem (potentially with different
values for moments/distance among players)
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Thanks for your attention!
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