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Motivation: model the random evolution of a continuous interface over
an obstacle.

At equilibrium, such a system can be modeled by a Bessel bridge. The
dynamics can be modeled by a Bessel SPDE. The corresponding equations
involve a renormalisation of local times.

1 Bessel processes and Bessel bridges

2 Bessel SPDEs

3 One formula for all
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Bessel processes and Bessel bridges

Squared Bessel processes

Let δ ≥ 0, y ≥ 0, and (Bt)t≥0 a BM.

By Yamada-Watanabe’s Theorem, there exists a unique (strong) solution
(Yt)t≥0 of

Yt = y +

∫ t

0
2
√
|Ys |dBs + δ t,

and moreover Y ≥ 0 so that |Y | = Y .

(Yt)t≥0 is called a Squared Bessel Process.
Many quantities related to these processes can be computed explicitly (see
Pitman-Yor).
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Bessel processes and Bessel bridges

Bessel processes

We set x :=
√

y , and define

Xt :=
√

Yt , t ≥ 0.

(Xt)t≥0 is a continuous Markov process on R+, called δ-dimensional
Bessel process started from x .

Bessel processes have several remarkable properties and arise as scaling
limits of various discrete models (e.g. pinning models, see
Deuschel-Giacomin-Zambotti, 2005).

Example (The values δ = 1 and δ = 3)

If B is a standard Brownian motion, then Xt := |Bt | is a 1-dimensional
Bessel process.

On the other hand, the conditional law:

L(Bt , t ∈ [0, 1] |B ≥ 0)

is equivalent to the law of a 3-dimensional Bessel process on [0, 1].
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Bessel processes and Bessel bridges

Diffusion local times of a Bessel process

Question: Given b ≥ 0, how much time does a δ-dimensional Bessel
process (Xt)t≥0 spend at the level b ?

Proposition

There exists a continuous process (`bt )b≥0,t≥0 such that, almost-surely, for
all f : R+ → R+ Borel and t ≥ 0 :∫ t

0
f (Xs) ds =

∫ ∞
0

f (b) `bt bδ−1 db.

What can we say about (`0t )t≥0 or, equivalently, about the contact set
Z (X ) := {t ≥ 0,Xt = 0} ?

Proposition

If δ ≥ 2, then Z (X ) = ∅ a.s.

If δ < 2, then Z (X ) is infinite a.s.
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Bessel processes and Bessel bridges

Bessel SDE

What equation does a δ-dimensional Bessel process X satisfy?

For δ > 1 we have:

Xt = x +
δ − 1

2

∫ t

0

1

Xs
ds + Bt .

For δ = 1:

Xt = x +
1

2
`0t + Bt .

Finally, for δ ∈ (0, 1):

Xt = x +
δ − 1

2

∫ ∞
0

1

b
(`bt − `0t )bδ−1 db + Bt ,

where we see a renormalisation of local times `bt − `0t appearing.
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Bessel SPDEs

Definition

Let (Xt)t≥0 be a δ-dimensional Bessel process started from 0. Then the
probability law:

L(Xt , t ∈ [0, 1] |X1 = 0)

is known as the law of a δ-dimensional Bessel bridge from 0 to 0 on [0, 1].

In a series of articles of the early 2000s, L. Zambotti introduced a family
of parabolic SPDEs with properties analogous to Bessel processes. In
particular, they admit Bessel bridges of dimension δ ≥ 3 as reversible
measure.
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Bessel SPDEs

In 1992, Nualart and Pardoux introduced and solved the stochastic heat
equation with reflection on R+ × [0, 1]:

∂u

∂t
=

1

2

∂2u

∂x2
+ ξ + η,

u ≥ 0, dη ≥ 0,
∫
R+×[0,1] u dη = 0.

(B3)

where ξ is a space-time white noise. In 2001, Lorenzo proved that this
SPDE has the law of a 3-dimensional Bessel bridge (i.e. of a Brownian
excursion) as invariant measure.

Let δ > 3 and c(δ) := (δ−1)(δ−3)
8 > 0. Lorenzo considered the stochastic

heat equation with repulsion from 0:

∂u

∂t
=

1

2

∂2u

∂x2
+

c(δ)

u3
+ ξ, (Bδ)

where u ≥ 0. This SPDE has the law of a δ-dimensional Bessel bridge as
reversible measure.
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Bessel SPDEs

The above SPDEs arise as scaling limits of various discrete interface
models :

∇φ interface models (Funaki-Olla, 2000 and Zambotti, 2004)

weakly asymmetric interfaces (Etheridge-Labbé, 2014).

They have several remarkable properties reminiscent of Bessel processes:

diffusive scaling (1− 2− 4)

hitting of 0 (see Dalang-Mueller-Zambotti, 2006)

What about δ < 3? This question has been open since 2001, and is
particularly relevant for δ = 1, in view of scaling limits of dynamical
critical pinning models.

9 / 16



Bessel SPDEs

The above SPDEs arise as scaling limits of various discrete interface
models :

∇φ interface models (Funaki-Olla, 2000 and Zambotti, 2004)

weakly asymmetric interfaces (Etheridge-Labbé, 2014).
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Bessel SPDEs

Lorenzo and I have recently proved integration by parts formulae on the
laws of Bessel bridges of dimension δ < 3. These formulae suggest that,
when δ < 3, the SPDE should be of the form

∂u

∂t
=

1

2

∂2u

∂x2
+

∂

∂t
drift + ξ

where the drift should contain renormalised local times.

More precisely, for all x ∈ (0, 1), there should exist a process (`bt,x)b,t≥0,
such that:

∀f : R+ → R+,

∫ t

0
f (u(s, x)) ds =

∫ +∞

0
f (b) `bt,x bδ−1 db.

Moreover, for all x ∈ (0, 1) and t > 0, we should have:

∂

∂b
`bt,x

∣∣∣∣
b=0

= 0.
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Bessel SPDEs

Then, for δ ∈ (1, 3), the drift would be formally given by :

c(δ)

∫ +∞

0

1

b3

(
`bt (x)− `0t (x)

)
bδ−1 db

Similarly, for δ ∈ (0, 1), the drift in the SPDE would be formally given by:

c(δ)

∫ +∞

0

1

b3

(
`bt (x)− `0t (x)− b2

2
∂2u`

u
t (x)

∣∣∣∣
u=0

)
bδ−1 db.

Finally, for δ = 1, the drift would be formally given by:

−1

8
∂2u`

u
t (x)

∣∣∣
u=0

,

so that we could write the following SPDE for δ = 1:

∂tu =
1

2
∂2xu − 1

8
∂t∂

2
u`

u
t (x)

∣∣∣∣
u=0

+ ξ, (B1)

describing the scaling limit of dynamical critical pinning models.
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Bessel SPDEs

Comments and open questions

The Bessel-like SPDEs for δ < 3 as written above are still essentially
conjectural.

We do have integration by parts formulae for the laws of δ-dimensional
Bessel bridges, for δ < 3.

By Dirichlet form methods, we constructed a weak form of the SPDE for
δ = 1, for stationary solutions. The case δ = 2 can be treated similarly.

The above SPDEs lie at the crossroads of major open questions :

local times for SPDEs ?

pathwise well-posedness ?

Strong Feller property ?

the associated Dirichlet forms for δ 6= 1, 2 ?
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One formula for all

What is the relation between all the SPDEs above ?

One can rewrite all the SPDEs above in a unified way, using a family of
Schwartz distributions (µα)α∈R acting as fractional derivatives.
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One formula for all

For all α > 0, we consider the following measure on R+:

µα(dx) :=
1

Γ(α)
xα−1 dx .

For α = −k with k ∈ N, we define the Schwartz distribution:

〈µα, ϕ〉 := (−1)kϕ(k)(0), ϕ ∈ Cc(R+).

Finally, if −k − 1 < α < −k with k ∈ N, we set :

〈µα, ϕ〉 :=
1

Γ(α)

∫ ∞
0

xα−1

ϕ(x)−
k∑

j=0

(−1)j

j!
ϕ(j)(0)

 dx , ϕ ∈ Cc(R+).

The family of distributions (µα)α∈R has numerous nice properties, and is
very similar to Caputo’s notion of fractional derivative (see also
Ramanujan’s Master Theorem).
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One formula for all

A unified fomula

For all δ > 0, the δ-Bessel SDE can be rewritten:

Xt = X0 +
Γ(δ)

2
〈µδ−1(db), `bt 〉+ Bt .

On the other hand, for all δ > 0, the δ- Bessel SPDE can be rewritten:

∂u

∂t
=

1

2

∂2u

∂x2
+

Γ(δ)

8(δ − 2)
〈µδ−3( db), `bt,x〉+ ξ.
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One formula for all

A distinction result

Let u(t, x) be a stationary solution to the stochastic heat equation on
R+ × [0, 1], i.e.:

∂tu =
1

2
∂2xu + ξ,

where u0 is distributed as a Brownian Bridge from 0 to 0 on [0, 1].

|u| = (|ut |)t≥0 is a C0- valued stochastic process. It solves an SPDE, which
is an instance of an infinite-dimensional Tanaka formula (Zambotti, 2006).

Theorem

|u| does not have the same law as a stationary solution to the Bessel-like
SPDE for δ = 1.
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