

Kirk Lecture: The Mathematics of Shuffling Joint work with Carmen Amarra and Luke Morgan

Cheryl E Praeger Centre for the Mathematics of Symmetry and Computation Isaac Newton Institute Cambridge, 17 March 2020

Describe some of the mathematics of shuffling cards

Focus on "perfect shuffles"

- Where the questions came from
- Early work by Diaconis, Graham and Kantor
- New work joint with Carmen Amarra and Luke Morgan

Perfect Shuffles

A deck containing 2n cards:

- Cut into two piles of n cards each
- Perfectly interleave them

Two different ways to do this: Out – shuffle keeps top card on top

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11) (n = 6)

Picking up: card 0, then card 6, then card 1, then card 7 and so on

After the out – shuffle: (0,6,1,7,2,8,3,9,4,10,5,11) (top card stays on top)

A deck containing 2n cards:

- Cut into two piles of n cards each
- Perfectly interleave them

Two different ways to do this: In – shuffle pick up first from the 2nd pile

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11) (n = 6)

Picking up: card 6, then card 0, then card 7, then card 1 and so on

After the in – shuffle: (6,0,7,1,8,2,9,3,10,4,11,5)

Perfect Shuffles

A deck containing 2n cards:

- Cut into two piles of n cards each
- Perfectly interleave them

Out - shuffles and in - shuffles

Questions (from card players and mathematicians):

- Can I get card 0 into any chosen position by repeated out or in shuffles?
- How many shuffles to get to a preferred ordering? Or the original order?
- How to alternate these shuffles to "randomize" the order?
- How many different orderings are possible?
- What kind of maths is going on?

A deck containing 2n cards:

- Cut into two piles of n cards each
- Perfectly interleave them

Any sequence of in-shuffles and out-shuffles Is a "valid move"

Interpret as permutations of 2n cards: first the out-shuffle

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11) After the out – shuffle: (0,6,1,7,2,8,3,9,4,10,5,11)

Interpret as: (0)(1, 2, 4, 8, 5, 10, 9, 7, 3, 6) (11)

A deck containing 2n cards:

- Cut into two piles of n cards each
- Perfectly interleave them

Any sequence of in-shuffles and out-shuffles Is a "valid move"

Interpret as permutations of 2n cards: and the in-shuffle

Starting order:	(0,1,2,3,4,5,6,7,8,9,10,11)
After the in- shuffle:	(6,0,7,1,8,2,9,3,10,4,11,5)

Interpret in-shuffle as: (0, 1, 3, 7, 2, 5, 11, 10, 8, 4, 9, 6)

Quite different from the out-shuffle: (0)(1, 2, 4, 8, 5, 10, 9, 7, 3, 6) (11)

Shuffle group is the set of all permutations obtained by performing any sequence of (any length of) in- and out-shuffles

Shuffles:permutations of the numbers $\{0, 1, 2, ..., 2n - 1\}$ elements of the symmetric group Sym(2n) of all permutations

Shuffle group subgroup of Sym(2n) generated by the out- and in-shuffle.

How big is the shuffle group? What do we know about its structure? Does it depend on n, and if so how?

"The mathematics of perfect shuffles" Advances in App. Math

- Explain they're not the first Section 3 gives overview of earlier work:
- Alex Elimsley 1957: importance of $o(2, mod \ 2n 1)$
- Golomb 1961, deck of 2n-1 cards: Group order is $(2n 1) \times o(2, mod \ 2n 1)$
- Discuss applications to parallel processing algorithms (Section 4)

And they work out the shuffle groups!

Very technical description – probably meaningless to most everyone

Write $\sigma = 0$ and δ = swap the piles, so $I = \delta \circ \sigma$ and shuffle group is $\langle \sigma, \delta \rangle$,

Theorem 1.1. [8, Theorem 1] The structure of the shuffle group $\langle \sigma, \delta \rangle$ on 2n points, where $n \ge 2$, is given in Table 1.

Size of each pile n	Shuffle group $\langle \sigma, \delta \rangle$
$n = 2^f$ for some positive integer f	$C_2 \wr C_{f+1}$
$n \equiv 0 \pmod{4}, n \ge 20 \text{ and } n \text{ is not a power of } 2$	$\ker(\operatorname{sgn}) \cap \ker(\overline{\operatorname{sgn}})$
$n \equiv 1 \pmod{4}$ and $n \ge 5$	$\ker(\overline{\operatorname{sgn}})$
$n \equiv 2 \pmod{4}$ and $n \ge 10$	B_n
$n \equiv 3 \pmod{4}$	$\ker(\operatorname{sgn}\overline{\operatorname{sgn}})$
n = 6	$C_2^6 \rtimes \mathrm{PGL}(2,5)$
n = 12	$C_2^{11} \rtimes M_{12}$

TABLE 1. The shuffle group on 2n points

- $B_n = C_2 \wr Sym(n) \leq Sym(2n)$, for $g \in B_n$
- •sgn(g) sign of g on 2n points, $\overline{sgn(g)}$ sign of g on n parts of size 2
- • M_{12} is the Mathieu group

Composition tree for a group

Porter-Novelli, Wild Bear, October 2019

1983 Diaconis, Graham and Kantor

"Central symmetry" preserved by in-shuffle and out-shuffle

Starting order:(0,1,2,3,4,5,6,7,8,9,10,11)After the out-shuffle:(0,6,1,7,2,8,3,9,4,10,5,11)After the in- shuffle:(6,0,7,1,8,2,9,3,10,4,11,5)

Typical Shuffle group involves: n or n-1 copies of C_2 (one for each pair) And Symmetric group: Sym(n) permuting these pairs (sometimes only Alt(n))

Typically shuffle group has size: $2^n \times n! > 2^n e^n$

Extraordinary special case: $n = 2^{f}$ where the group size is only

$$2^n \times (f+1) \approx 2^n \log n$$

Two small cases: n = 6, 12 where the group involves a group smaller than Sym(n), namely $PGL_2(5)$ or M_{12} (a sporadic Mathieu group)

The Periodic Table Of Finite Simple Groups

0, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Dynkin Diagrams of Simple Lie Algebras										C ₂	١						
	$A_{n} \xrightarrow{O}_{1} \xrightarrow{O}_{2} \xrightarrow{O}_{3} \xrightarrow{O}_{n} \xrightarrow{O}_{1} \xrightarrow{O}_{1} \xrightarrow{O}_{2} \xrightarrow{O}_{3} \xrightarrow{O}_{4}$												2					
$A_1(4), A_1(5)$	A ₂ (2)				D	")	QQ	Q				$^{2}A_{3}(4)$				G ₂ (2)'		
A_5	$A_1(7)$	B _n			O	O 2	ç	D .	G ₂ ($B_2(3)$	$C_{3}(3)$	$D_4(2)$	${}^{2}D_{4}(2^{2})$	${}^{2}A_{2}(9)$	<i>C</i> ₃	
60	168											25 920	4 585 351 680	174 182 400	197 406 720	6 0 4 8	3	
$A_1(9), B_2(2)'$	- (3)'	C _n	$\xrightarrow{0}_{1}$		$- \mathop{O}_{u} E_{6}$.7,8 O	- <u>o</u> - o	5		0 0 7 8			- ()		2- (-2)	2		
A ₆	$A_{1}(8)$											$B_2(4)$	$C_{3}(5)$	$D_4(3)$	$^{2}D_{4}(3^{2})$	$^{2}A_{2}(16)$	C_5	
360	504											979 200	228 501	4 952 179 814 400	10 131 968 619 520	62 400	5	
4	4 (77)	F (2)	F (3)	F (2)	F (2)	C(2)	312 (03)	2 = (22)	272 (03)	Tits*	20 (03)	B (0)	C (2)	D (2)	20 (02)	2 4 (25)	C	
A7	$A_1(11)$	E6(2)	E7(2)	$E_{8}(2)$	F4(2)	$G_2(3)$	$^{-}D_{4}(2^{-})$	-E ₆ (2-)	$-B_2(2^{\circ})$	$-F_{4}(2)$	$-G_2(3^{\circ})$	B3(2)	C4(3)	$D_{5}(2)$	$-D_5(2^{-})$	$-A_2(25)$	L ₇	
2 520	660	005 575 270 400	075799799100497 262690902915400	1473017617617871871871871871871 14673017718679871871871871871	603 366 400	4 245 696	211 341 312	774 853 939 200	29 120	17971200	10 073 444 472	1 451 520	654 489 600	23 499 295 948 800	25 015 379 558 400	126 000	7	
A ₃ (2)	. (- (-)	F (*)	= (+)	T (a)	2 (1)	3- (-3)	2- (-2)	25 (-5)	2- (-3)	2 - (-5)	P (=)	- (-)	P (=)	2	2 . (-)		
A_8	$A_1(13)$	$E_{6}(3)$	E ₇ (3)	$E_{8}(3)$	$F_4(3)$	$G_{2}(4)$	$^{5}D_{4}(3^{5})$	$^{2}E_{6}(3^{2})$	$^{2}B_{2}(2^{3})$	${}^{2}F_{4}(2^{3})$	$^{2}G_{2}(3^{3})$	$B_{2}(5)$	$C_{3}(7)$	$D_4(5)$	$^{2}D_{4}(4^{2})$	² A ₃ (9)	C ₁₁	
20 160	1 092	7 290 703 347 541 465 210 d25 255 395 234 643 230	47/9 7/11 139 021 644 994 579 203 770 765 254 617 595 200		5734420792816 671844761600	251 596 800	20 560 831 566 912	14 636 850 916 999 691 633 965 120 690 532 377 600	32 537 600	264 905 352 699 586 176 614 400	49 825 657 439 340 352	4 680 000	273 457 218 604 953 600	8911 539 000	67 536 471 195 648 000	3 265 920	11	
			_ / >	- / >	- ()	- ()	7 . 7	1	2 (7)	2 / Ex	2	- / >		- / >	2 2	2		
Ag	$A_1(17)$	$E_{6}(4)$	$E_7(4)$	$E_{8}(4)$	$F_{4}(4)$	$G_{2}(5)$	${}^{3}D_{4}(4^{3})$	$^{2}E_{6}(4^{2})$	$^{2}B_{2}(2')$	${}^{2}F_{4}(2^{3})$	$^{2}G_{2}(3')$	$B_2(7)$	$C_{3}(9)$	$D_{5}(3)$	$^{2}D_{4}(5^{2})$	$^{2}A_{2}(64)$	C ₁₃	
181 440	2 448	53 526 700 761 342 640 100 810 679 051 142 355 466 746 890 800	11 10 14 06 18 06 18 17 19 721 17 16 17 16 19 19 19 19 17 15 19 17 18 17 18 18 19 19 19 19 19 19 19 19		19 009 825 523 840 945 451 297 669 120 000	5 859 000 000	67 802 330 642 790 400	53496376147617709 485695372397364 9836953820808080	34 093 383 680	2 329 633 135 799 991 487 202 167 609 262 722 568 000	239 189 910 264 352 349 332 632	138 297 600	54 025 731 402 499 584 000	1 289 512 799 941 305 139 200	17 880 203 230 000 000 000	5 515 776	13	
	$PSt_{n+1}(q),t_{n-1}(q)$											$O_{2\pi+1}(q), \Omega_{2\pi+1}(q)$	$PSp_{2\pi}(q)$	$O^+_{2u}(q)$	$O^{2a}(q)$	$PSU_{n+1}(q)$	\mathbb{Z}_p	
A _n	$A_n(q)$	$E_6(q)$	$E_7(q)$	$E_8(q)$	$F_4(q)$	$G_2(q)$	${}^{3}D_{4}(q^{3})$	${}^{2}E_{6}(q^{2})$	$^{2}B_{2}(2^{2n+1})$	${}^{2}F_{4}(2^{2n+1})$	${}^{2}G_{2}(3^{2n+1})$	$B_n(q)$	$C_n(q)$	$D_n(q)$	$^2D_n(q^2)$	$^{2}A_{n}(q^{2})$	C_p	
<u>n1</u> 2	$\frac{s^{e_{k+1}e_{j}}}{(s+tq+1)}\prod_{l=1}^{r}(s^{e_{l}(1)}-1)$	$\begin{array}{c} q^{10}(q^2-1)(q^2-1)(q^2-1)\\ (q^4-1)(q^4-1)(q^2-1)\\ (1,q-1)\end{array}$	$\frac{g^{(2)}}{(2,q-1)}\prod_{\substack{i=1\\i\neq k,k}}^{n}(q^{ki}-1)$	$\begin{array}{l} (q^{22}-1)(q^{23}-1)(q^{2}-1)\\ (q^{22}-1)(q^{23}-1)(q^{23}-1)\\ (q^{23}-1)(q^{23}-1)(q^{23}-1)\end{array}$	$e_{(q^2-1)(q^2-1)}^{N}$	$q^{\theta}(q^{\theta}-1)\left(q^{2}-1\right)$	$\begin{array}{c} q^{12}(q^2+q^2+1) \\ (q^2-1)(q^2-1) \end{array}$	$\begin{array}{c} \phi^{q_{0}}(\phi^{12}-1)(\phi^{0}-1)(\phi^{0}-1)\\ (\phi^{0}-1)(\phi^{0}+1)(\phi^{0}-1)\\ (3,\gamma+1)\end{array}$	$q^2(q^2+1)(q-1)$	$q^{12}(q^6+1)(q^4-1) \\ (q^2+1)(q-1)$	$q^3(q^3+1)(q-1)$	$(2,q-1)\prod_{i=1}^{q^{q^2}}(q^{q^2}-1)$	$q^{q^{q^2}}$ $(2,q-1)\prod_{i=1}^{q}(q^{2i}-1)$	$\frac{d^{2(k-1)}(q^{k-1})}{(kq^{k-1})}\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{y^{2(1-2)}(y^{2}+y)}{(1-y^{2}+y)}\prod_{k=1}^{n-1}(\psi^{2k}-1)$	$\frac{1^{(m+p)}}{(n-1)^{m+p}}\prod_{i=1}^{m-1}(q^i-(-1)^i)$	p	

Alternating Groups														
Classical Crevalley Groups	Alternates [#]						J(1), J(11)	HJ	HJM				<i>Б.НИМ,ИТИ</i>	
Classical Steinberg Groups	Symbol	M ₁₁	M ₁₂	M_{22}	M ₂₃	M_{24}	I1	I_2	I3	I4	HS	McL	He	Ru
Steinberg Groups							17			86 005 501 016				
Suzuki Groups	Order [‡]	7 920	95 040	443 520	10 200 960	244 823 040	175 560	604 800	50 232 960	077 562 880	44 352 000	898 128 000	4 030 387 200	145 926 144 000
Ree Groups and Tits Group*			\checkmark											
Sporadic Groups														
Cyclic Groups	⁷ For sporadic groups and families, alternate names in the upper left are other names by which they													
The Tits group ${}^2F_4(2)'$ is not a group of Lie type, but is the (index 2) commutator subgroup of ${}^2F_4(2)$.	they be known, Foil special hard-special groups these are used to indicate isomorphims. All such isomorphisms annex on the fable except the fam-	e~	O'NE OLE	.2	.2	a	ED	15	E.F	M(22)	14(22)	T M(24)/	E.	E.M.
It is usually given honomry Lie type status.	By $B_n(2^m) \cong C_k(2^m)$.	32	0 N3, 0-3	•3	-2		13,0	Lys	r3, E	M(22)	M(23)	$F_{3+}, M(24)$	F ₂	11,001
The groups starting on the second row are the clas-	Divita simple enouge are determined by their order	Suz	O'N	Co ₃	Co ₂	Co ₁	HN	Ly	Th	Fi22	Fi23	Fi'_{24}	В	М
sival groups. The sporadic suzuki group is unrelated to the families of Suzuki groups	with the following exceptions: $B_n(q)$ and $C_n(q)$ for q old, $n > 2$; $A_1 \cong A_3(2)$ and $A_2(4)$ of under 20160.	448 345 497 600	460 815 505 920	495 766 656 000	42 305 421 312 000	4 157 776 806 543 360 000	273 030 912 000 000	51 765 179 004 000 000	90 745 943 887 872 000	64 561 751 654 400	4 089 470 473 293 004 800	1 255 205 709 190 661 721 292 800	4 154 287 487 236 436 197 172 590 544 000 000	6050177434394592555 865459984961710355 00575436500000000

A deck containing kn cards:

- Cut into k piles of n cards each
- "Perfectly interleave them" What should this mean?
- The **out-shuffle** σ "picks up" top card from each pile in turn, and repeats
 - For k = 3, n = 4 the deck (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
 - is mapped to (0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11)
 - With associated perm: (0)(1, 3, 9, 5, 4)(2, 6, 7, 10, 8)(11)

But what should the in-shuffle be?

Rethink the case k = 2,

In-shuffle same as "swap piles" followed by out-shuffle

A deck containing kn cards:

- Cut into k piles of n cards each
- "Perfectly interleave them" What should this mean?
- Will have the **out-shuffle** σ "picks up" top card from each pile in turn, ...
- Allow an **arbitrary subgroup** $P \leq Sym(k)$ of the k piles to form the

Generalised shuffle group $G = Sh(P, n) \leq Sym(kn)$

Not first to study many handed shuffler: 1980's

- Steve Medvedoff and Kent Morrison Math Magazine 1987
- John Cannon early computational information.

1984 Computations: John Cannon & Kent Morrison

Focused on the case of G = Sh(Sym(k), n) that is P = Sym(k)

- 1. $kn = k^{f}$ ("power case") turned out to give "exceptionally small" G If $kn = k^{f}$ then $Sh(Sym(k), k^{f-1}) = Sym(k)^{f} . C_{f}$
- 2. Worked out precisely when $Sh(Sym(k), n) \subseteq Alt(kn)$ contains only even permutations [in terms of $n, k \pmod{4}$]
- 3. Explored cases k=3 and k=4 computationally for small n and

4. MM Conjecture: if $kn \neq k^f$ and $kn \neq 4 \cdot 2^f$ then Sh(Sym(k), n)should be Sym(kn) or Alt(kn)

Explored G = Sh(P, n) for general $P \leq Sym(k)$

- Show the "power case" where $kn = k^f$ is also special for general P
- Show certain properties of P lead to similar properties of G
- Confirm the MM-Conjecture [that G usually contains Alt(kn)] in 3 cases:
 - -k > n
 - $k = 2^e \ge 4$
 - $k = \ell^e$ and $n = \ell^f$ for some ℓ , e and f
- We gained insights leading to new open questions

Suppose $P \leq Sym(k)$ is transitive. Is G = Sh(P, n) transitive?

- The answer is "yes" transitive P gives transitive G
- To see this use $\rho: P \to G$ where for $\tau \in Sym(k)$, $\rho(\tau)$ means "permute the piles according to τ "

= 3, n =	= 4	

For $\tau = (0,1) \in Sym(3)$, $\rho(\tau) = (0,4)(1,5)(2,6)(3,7)$

In Example k

Label Deck as $[kn] = \{0, 1, ..., kn - 1\}$ So set of piles is $[k] = \{0, 1, ..., k - 1\}$

Pile 0 has cards { 0, 1, ..., n - 1 }

Suppose $P \leq Sym(k)$ is transitive. Is G = Sh(P, n) transitive?

 $\rho(P)$ has the horizontal layers as its "orbits"

- We examine the shuffle σ and check that it "merges" all these orbits
- The shuffle maps (0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
- To (0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11)

So the shuffle σ is (0)(1, 3, 9, 5, 4)(2, 6, 7, 10, 8)(11)

So $1 \rightarrow 3.1$, $2 \rightarrow 3.2$, $3 \rightarrow 3.3$, $4 \rightarrow 1 = 3.4 - 11$, $5 \rightarrow 4 = 3.5 - 11$, $6 \rightarrow 7 = 3.6 - 11$, $7 \rightarrow 10 = 3.7 - 11$, $8 \rightarrow 2 = 3.8 - 22$, ...

Suppose $P \leq Sym(k)$ is transitive. Is G = Sh(P, n) transitive?

• We examine the shuffle σ and check that it "merges" all these orbits

Each intransitive subgroup P of Sym(3) gives an in transitive shuffle group G =Sh(P, 4) - but general case not settled

```
Shuffle:

\sigma fixes 0 and otherwise

maps card

a

To card

ka \pmod{kn-1}

The remainder between 1

and kn - 1 after dividing ka

by kn - 1
```


Primitive: "only invariant partitions are trivial" Good tools for studying primitive groups

What other properties are interesting?

Primitive: "only invariant partitions are trivial" Good tools for studying primitive groups

Regular permutation group $P \leq Sym(k)$: for each point pair (α, β) exactly one $g \in P$ maps $\alpha \rightarrow \beta$

Fact: If $P \le Sym(k)$ and *P* is primitive and regular, then k = p is prime and $P \cong C_p$ is cyclic of order *p*

• Recall: if k = 2 then $P = Sym(2) \cong C_2$ and G = Sh(Sym(2), n) is not primitive ["central symmetry" preserved]

Theorem: If $P \le Sym(k)$ is primitive and not regular then G = Sh(P, n) primitive

Regular permutation group $G \leq Sym(k)$: for each point pair $\{\alpha, \beta\}$ exactly one $g \in G$ maps $\alpha \rightarrow \beta$

Fact: If $G \leq Sym(k)$ and *G* is primitive and regular, then k = p is prime and $G \cong C_p$ is cyclic of order *p*

- Recall: if k = 2 then P = Sym(2) ≅ C₂ and G = Sh(Sym(2), n) is not primitive ["central symmetry" preserved]
- If k = p is odd then $G = Sh(C_p, n)$ is imprimitive if $n = p^f$

is Alt(*kn*) or *Sym*(*kn*) if $n \neq p^f$ IF $p \leq 13, n \leq 1000$ AND WE CONJECTURE THIS TRUE FOR ALL $n \neq p^f$

Theorem: If $P \le Sym(k)$ is primitive and not regular then G = Sh(P, n) primitive

1. The Power case: $n = k^{f}$, and any $P \leq Sym(k)$ implies that $G = Sh(P, n) = P \wr C_{1+f}$ [i.e. SMALL] [generalises DGK and MM]

2. Other interesting structure preservation happens: AFFINE STRUCTURE: [k] = finite vector space and

[k] = finite vector space and each $x \in P$ acts as a nonsingular linear transformation followed by a translation

- If *P* preserves an "affine structure" on $[k] = F_p^e$ then G = Sh(P, n)preserves an affine structure on [kn] "whenever it can"
 - If $n = p^f$ then G = Sh(P, n) preserves affine structure on $[kn] = F_p^{e+f}$
 - If $n \neq p^f$ and if k > n, and if P is 2-transitive, then G = Sh(P, n) is Alt(kn) of Sym(kn) [proves MM conjecture for this situation: relies on FSGC]

1. The Power case: $n = k^{f}$, and any $P \leq Sym(k)$ implies that $G = Sh(P, n) = P \wr C_{1+f}$ [i.e. SMALL] [generalises DGK and MM]

2. Other interesting structure preservation happens: PRODUCT STRUCTURE:

 $[k] = \ell \times \cdots \times \ell = [\ell]^e$ and each $x \in P$ acts independently on each entry of a point $(\alpha_1, \dots, \alpha_e)$ with elements of $Sym(\ell)$ followed by a permutation of the entries

If *P* preserves a "product structure" on $[k] = [\ell]^e$ then G = Sh(P, n) preserves a product structure on $[kn] = [\ell]^{e+f}$ "whenever it can", that is, whenever $[n] = [\ell]^f$

2-Transitive: $P \le Sym(k)$ transitive and stabiliser P_0 transitive on $[k] \setminus \{0\}$

We show: if k > n > 2 and $P \le Sym(k)$ is 2-transitive then G = Sh(P, n) is 2-transitive.

We asked ourselves: Since finite 2-transitive groups are known explicitly (using the finite simple group classification) Can we be more specific?

Fact: P is 2-transitive implies P is "almost simple" or affine

- 1. Affine case: we already discussed
- 2. Almost simple case: we prove Sh(P, n) is almost simple
- 3. Moreover: if P is Alt(k) or Sym(k) then Sh(P,n) is Alt(kn) or Sym(kn)

[proving MM conjecture in this case]

One last investigation, then summary and questions: Suppose $k = 2^e \ge 4$ and $n \ne 2$ -power.

For $t \in \{1, 2, ..., e\}$, the deck $[kn] = [2^t \cdot 2^{e-t}n]$ and $G_t = Sh(C_2^t, 2^{e-t}n)$ all groups transitive on [kn]

How are they related? Note that G_1 is known from [DGK] With much hard work and misgivings we proved that

 $G_1 \ge G_2 \ge \cdots \ge G_e$ Generically: all the G_t equal and all preserve central symmetry

Theorem If $k = 2^e \ge 4$ and $n \ne 2$ -power, then Sh(Sym(k), n) is Alt(kn) or Sym(kn)

MM Conjecture Still Open: if $kn \neq k^f$ and $kn \neq 4 \cdot 2^f$ then Sh(Sym(k), n) should be Alt(kn) or Sym(kn)

Our contribution: we have confirmed it for:

$$\begin{array}{l}
- k > n \\
- k = 2^e
\end{array}$$

-
$$k = \ell^e$$
 and $n = \ell^f$ for some ℓ, e, f

Work led to our own conjectures: first If k is an odd prime, k < n, and n is not a power of k, then $Sh(C_k, n)$ should be Alt(kn) or Sym(kn)

Diaconis is particularly interested in $P = \langle \tau \rangle$ where τ "reverses the piles"

Not much in [MM] or our paper [AMP]

But recent computational evidence suggests some very interesting groups arise. Perhaps at last we'll be able to make sense of the computational data from John Cannon and Kent Morrison's data

Diaconis is particularly interested in $P = \langle \tau \rangle$ where τ "reverses the piles"

Not much in [MM] or our paper [AMP]

But recent computational evidence suggests some very interesting groups arise. Perhaps at last we'll be able to make sense of the computational data from John Cannon and Kent Morrison's data

Thank you

