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Describe some of the mathematics of shuffling cards

Focus on “perfect shuffles”

* Where the questions came from
« Early work by Diaconis, Graham and Kantor
* New work joint with Carmen Amarra and Luke Morgan
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Perfect Shuffles

A deck containing 2n cards:
« Cut into two piles of n cards each
» Perfectly interleave them

Two different ways to do this:
Out — shuffle keeps top card on top

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11) (n=6)
Picking up: card 0, then card 6, then card 1, then card 7 and so on

After the out — shuffle: (0,6,1,7,2,8,3,9,4,10,5,11) (top card stays on top)
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Perfect Shuffles

A deck containing 2n cards:
« Cut into two piles of n cards each
» Perfectly interleave them

Two different ways to do this:
In — shuffle pick up first from the 2nd pile

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11) (n=6)
Picking up: card 6, then card O, then card 7, then card 1 and so on

After the in — shuffle: (6,0,7,1,8,2,9,3,10,4,11,5)
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Perfect Shuffles

A deck containing 2n cards:
« Cut into two piles of n cards each
» Perfectly interleave them

Out — shuffles and in - shuffles

Questions (from card players and mathematicians):

« Can | get card 0 into any chosen position by repeated out or in shuffles?
« How many shuffles to get to a preferred ordering? Or the original order?
« How to alternate these shuffles to “randomize” the order?

« How many different orderings are possible?

 What kind of maths is going on?



Perfect Shuffles

A deck containing 2n cards:
« Cut into two piles of n cards each
» Perfectly interleave them

Is a “valid move”

Interpret as permutations of 2n cards: first the out-shuffle

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11)
After the out — shuffle: (0,6,1,7,2,8,3,9,4,10,5,11)

Interpret as: (0)(1, 2, 4, 8, 5, 10,9, 7, 3, 6) (11)
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Perfect Shuffles

A deck containing 2n cards:
« Cut into two piles of n cards each
» Perfectly interleave them

Any sequence of in-shuffles and out-shuffles
Is a “valid move” -

© Antoine Arraou/PhotoAlto/Corbis

Interpret as permutations of 2n cards: and the in-shuffle

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11)
After the in— shuffle: (6,0,7,1,8,2,9,3,10,4,11,5)
Interpret in-shuffle as: 0,1,3,7,2,5,11, 10, 8,4, 9, 6)

Quite different from the out-shuffle: (0)(1, 2, 4, 8, 5, 10, 9, 7, 3, 6) (11)
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Shuffle group is the set of all
permutations obtained by
performing any sequence of (any
length of) in- and out-shuffles

Shuffles: permutations of the numbers {0,1,2,...,2n—1}
elements of the symmetric group Sym(2n) of all permutations

Shuffle group  subgroup of Sym(2n) generated by the out- and in-shuffle.

How big is the shuffle group? What do we know about its structure?
Does it depend on n, and if so how?



THE UNIVERSITY OF
¥ WESTERN
ams? AUSTRALIA

1983 Diaconis, Graham and Kantor

“The mathematics of perfect shuffles” Advances in App. Math

« Explain they’re not the first — Section 3 gives overview of earlier work:

« Alex Elimsley 1957: importance of 0(2, mod 2n — 1)

« Golomb 1961, deck of 2n-1 cards: Group order is (2n — 1) X 0(2,mod 2n — 1)
« Discuss applications to parallel processing algorithms (Section 4)

And they work out the shuffle groups!
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Very technical description — probably meaningless to most everyone

Write 0 = 0 and § = swap the piles, so I = § o g and shuffle group is ( g, §),

Theorem 1.1. [8, Theorem 1] The structure of the shuffie group (,9) on 2n points, where
n =2, 1s given in Table 1.

Size of each pile n Shuffle group (o, )

n = 2/ for some positive integer f Co 1 Cypq

n =0 (mod 4), n > 20 and n is not a power of 2 | ker(sgn) N ker(sgn)
=1 (mod 4) and n >5 ker(sgn)

n =2 (mod 4) and n > 10 B,

n=3 (mod 4) ker(sgnsgn)

n==0 CY x PGL(2,5)

n=12 (*%1 X ;\[12

TABLE 1. The shuffle group on 2n points

*B, = C, ' Sym(n) < Sym(2n), for g € B,
*sgn(g) sign of g on 2n points, sgn(g) sign of g on n parts of size 2
*M;, is the Mathieu group
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“Central symmetry” preserved by in-shuffle and out-shuffle

Starting order: (0,1,2,3,4,5,6,7,8,9,10,11)
After the out-shuffle: (0,6,1,7,2,8,3,9,4,10,5,11)
After the in— shuffle: (6,0,7,1,8,2,9,3,10,4,11,5)

Typical Shuffle group involves: n or n — 1 copies of C, (one for each pair)

And Symmetric group: Sym(n)  permuting these pairs (sometimes
only Alt(n))

Typically shuffle group has size: 2" xn! > 2Men

Extraordinary special case: n = 2/ where the group size is only

2" X (f+1)~ 2"logn
Two small cases: n = 6,12 where the group involves a group smaller than
Sym(n) , namely PGL,(5) or M;, (a sporadic Mathieu group)



=4 THE UNIVERSITY OF

¥ WESTERN
AUSTRALIA

Finite simple group classification

The Periodic Table Of Finite Simple Groups

“I. Dynkin Diagrams of Simple Lie Algebras
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A deck containing kn cards:
« Cutinto k piles of n cards each
« “Perfectly interleave them” — What should this mean?

 The out-shuffle o “picks up” top card from each pile in turn, and
repeats

For k = 3,n =4 the deck (0,1, 2,3,4,5,6,7,8,9,10,11)

IS mapped to

(0,4,8,1,5,9,2,6,10,3,7,11)

With associated perm: (0)(1, 3, 9, 5, 4)(2, 6, 7, 10, 8)(11)

O

-
-
-

-
-
-
-

O

-
-
-

But what should the in-shuffle be?

Rethink the case k = 2,

In-shuffle same as “swap piles” followed by out-shuffle
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A deck containing kn cards:
* Cutinto k piles of n cards each
« “Perfectly interleave them” — What should this mean?

« Will have the out-shuffle o “picks up” top card from each pile in turn, ...
« Allow an arbitrary subgroup P < Sym(k) of the k piles to form the

Generalised shuffle group G = Sh(P,n) < Sym(kn)

Not first to study many handed shuffler: 1980’s
« Steve Medvedoff and Kent Morrison Math Magazine 1987
* John Cannon — early computational information.
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Focused on the case of G = Sh(Sym(k),n) thatis P = Sym(k)

1. kn = k/ (“power case”) turned out to give “exceptionally small” G

If kn = k/ then Sh(Sym(k), k' ~1) = Sym(k)'. C;

2. Worked out precisely when Sh(Sym(k),n) € Alt(kn) contains only
even permutations [interms of n, k (mod 4) |

3. Explored cases k=3 and k=4 computationally for small n and

4. MM Conjecture: if kn # k/ and kn # 4 - 2/ then Sh(Sym(k),n)
should be Sym(kn) or Alt(kn)
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Explored ¢ = Sh(P,n) for general P < Sym(k)

Show the “power case” where kn = k/ is also special for general P

Show certain properties of P lead to similar properties of G

Confirm the MM-Conjecture [that G usually contains Alt(kn)] in 3 cases:
— k>n
— k=2¢>14
— k=+¢%andn = ¢/ forsome ¢, e and f

We gained insights leading to new open questions
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Suppose P < Sym(k) is transitive. Is G = Sh(P,n) transitive?

* The answer is “yes’— transitive P gives transitive G

* To see thisuse p: P — G where for t € Sym(k), p(r) means “permute the
piles accordingto t”

g g g Label Deck as [kn] ={0,1, ...,kn — 1}

C C -

O O 0O So set of pilesis [k] ={0,1, ...,k — 1}
In Example k = 3,n =4 Pile O has cards { 0,1, ...,n — 1}

Fort = (0,1) € Sym(3),
p(t) = (0,4)(1,5)(2,6)(3,7)
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Suppose P < Sym(k) is transitive. Is G = Sh(P,n) transitive?

p(P) has the horizontal layers as its “orbits”

« We examine the shuffle ¢ and check that it “merges” all these orbits
» The shuffle maps (0,1, 2,3,4,5,6,7,8,9,10,11)

 To (0,4,8,1,5,9,2,6,10,3,7,11)
In Example g g g So the shuffle o is
k=3n=4 - - - (0)(1, 3, 9,5, 4)(2, 6, 7, 10, 8)(11)
m = @

So1-31, 2-32, 3533, 4-1=34-11, 5-4=35-11,
6—->7=36-—11, 7-10=3.7—-11,8->2=3.8—-22, ..
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Suppose P < Sym(k) is transitive. Is G = Sh(P,n) transitive?

 We examine the shuffle o and check that it “merges” all these orbits

. . - Shuffle:

— — — o fixes O and otherwise

I I O maps card

C C C a

To card

Each intransitive subgroup ka (mod kn — 1)
P of Sym(3) gives an in
transitive shuffle group G = The remainder between 1
Sh(P,4) - but general case and kn — 1 after dividing ka
not settled by kn —1
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Transitive subgroups of Sym(k)

/ \
Transitive groups /_\

Sym(k)
Primitive groups O \ \

\/O Alt (k)

Primitive: “only invariant partitions are trivial”
Good tools for studying primitive groups
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Transitive subgroups of Sym(k)

/ \
Transitive groups /_\
{0,2 1,3 }invariant for 5\3’m(k<

P =((0123),(13)) < Sym(4) Primitive groups O
O | Alt(k)
2 3

Primitive: “only invariant partitions are trivial”
Good tools for studying primitive groups
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Regular permutation group P < Sym(k) : for each point pair
(a,B) exactlyonege P mapsa = f

Fact: If P < Sym(k) and P is primitive and regular, then k = p is prime and
P = C, is cyclic of order p

 Recall:if k=2then P =Sym(2) =(C, and G = Sh(Sym(2),n) is not
primitive [‘central symmetry” preserved]

Theorem: If P < Sym(k) Is primitive and not regular
then G = Sh(P,n) primitive
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Regular permutation group ¢ < Sym(k) : for each point pair
{a,B} exactlyonege G mapsa = f

Fact: If 6 < Sym(k) and G is primitive and regular, then k = p is prime and
G = C, is cyclic of order p

 Recall:if k=2then P =Sym(2) =(C, and G = Sh(Sym(2),n) is not
primitive [‘central symmetry” preserved]

« Ifk=pisoddthen G = Sh(C, n)isimprimitive if n = p/

is Alt(kn) or Sym(kn) ifn #p/ IFp <13,n <1000
AND WE CONJECTURE THIS TRUE FOR ALL n # p/

Theorem: If P < Sym(k) Is primitive and not regular
then G = Sh(P,n) primitive
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1. The Power case: n = k/, and any P < Sym(k)
implies that G = Sh(P,n) = P Cy [l.e. SMALL]

[generalises DGK and MM]

2. Other interesting structure preservation happens:
AFFINE STRUCTURE:

If P preserves an “affine structure” on [k] = E; then G = Sh(P,n)
preserves an affine structure on [kn] “whenever it can”
e+f

If n = p/ then G = Sh(P,n) preserves affine structure on [kn] = E,

If n = p/ andif k > n, and if P is 2-transitive, then G = Sh(P,n) is
Alt(kn) of Sym(kn) [proves MM conjecture for this situation: relies
on FSGC]
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1. The Power case: n = k/, and any P < Sym(k)
implies that G = Sh(P,n) = P Cy [l.e. SMALL]

[generalises DGK and MM]

2. Other interesting structure preservation happens:
PRODUCT STRUCTURE:

[k] = ¢ x ---x £ = [£]¢ and each x € P acts independently

on each entry of a point (a4, ..., @,) with elements of Sym(¥)
followed by a permutation of the entries

If P preserves a “product structure” on [k] = [£]® then G =
Sh(P,n) preserves a product structure on [kn] = [¢]¢+/

“whenever it can”, that is, whenever [n] = [{’]f
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Transitive subgroups of Sym(k)

/ \
Transitive groups

Sym(k)

Primitive groups

\

2-Transitive groups

Focus: P = Sym(k)

So in particular P is 2-transitive

2-Transitive: P < Sym(k) transitive and stabiliser P
transitive on [k] \ { 0}
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We show: iffk > n > 2 |and P < Sym(k) is 2-transitive
then G = Sh(P,n) is 2-transitive.

We asked ourselves: Since finite 2-transitive groups are known explicitly
(using the finite simple group classification) Can we be more specific?

Fact: P is 2-transitive implies P is “almost simple” or
affine

1. Affine case: we already discussed
2. Almost simple case: we prove Sh(P,n) is almost
simple
3. Moreover: if Pis Alt(k) or Sym(k) then Sh(P,n) is
Alt(kn) or Sym(kn)
[proving MM conjecture in this case]
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One last investigation, then summary and questions:
Suppose k = 2¢ > 4 and n # 2-power.

For te€{1,2,..,e},thedeck [kn] = [2¢-2¢"t'n] and
G, = Sh(C,2¢7tn) all groups transitive on [kn]

How are they related? Note that G, Is known from [DGK]

With much hard work and misgivings we proved that

Gl = Gz = e 2 Ge Generically: all the G,
equal and all preserve
central symmetry

Theorem If k = 2¢ > 4 and n # 2-power, then
Sh(Sym(k),n) is Alt(kn) or Sym(kn)
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MM Conjecture Still Open: if kn # k/ and kn # 4 - 27
then Sh(Sym(k),n) should be Alt(kn) or Sym(kn)

Our contribution: we have confirmed it for:
— k>n
— k=2°¢
— k=+¢%andn = ¢/ for some 4, e, f

Work led to our own conjectures: first
If kK is an odd prime, k <n, and n is not a power of k,
then Sh(Cy,n) should be Alt(kn) or Sym(kn)




More questions %# AUSTRALIA

Diaconis is particularly interested in P = (t) where t “reverses
the piles”

Not much in [MM] or our paper [AMP]

But recent computational evidence
suggests some very interesting groups
arise. Perhaps at last we'll be able to

make sense of the computational data from
John Cannon and Kent Morrison’s data
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More questions

Diaconis is particularly interested in P = (t) where t “reverses
the piles”

Not much in [MM] or our paper [AMP]

But recent computational evidence
suggests some very interesting groups
arise. Perhaps at last we’ll be able to

make sense of the computational data from
John Cannon and Kent Morrison’s data

Thank you




