
Industrial Use of a Mechanical Theorem Prover

J Strother Moore
Department of Computer Science
University of Texas at Austin

July, 2017

1

About “Big Proof”

This 6 week program focuses on mechanically

checked proofs of conventional mathematical

challenges.

But there is another important opportunity for

mathematicians and mechanized provers.

2

A New Era

Formal mathematical logic was a cumbersome

solution in search of a practical problem

3

A New Era

Formal mathematical logic was a cumbersome

solution in search of a practical problem until the

invention of the digital computer.

• Digital artifacts are formal systems.

• Computers allow construction of trustworthy

formal proofs.

This is an extraordinarily young development (wrt

the history of formalized mathematics) and offers

many opportunities for discovery.

4

Theorems about These Artifacts
Matter to Everyone Who. . .

• owns a mobile phone, TV, modern appliance

• rides in an automobile, airplane, or train

• visits a doctor or hospital

• uses online banking

• wishes to avoid an accidental nuclear exchange

• . . .

5

6

7

How can one check a routine in the sense of making

sure that it is right?

In order that the man who checks may not have too

difficult a task the programmer should make a

number of definite assertions which can be checked

individually, and from which the correctness of the

whole programme easily follows.

— Alan Turing, “Checking a large routine,” 1949

8

Instead of debugging a program, one should prove

that it meets its specifications, and this proof

should be checked by a computer program.

— John McCarthy, “A Basis for a Mathematical

Theory of Computation,” 1961

9

We can formalize the semantics of computer

hardware and software.

10

We can formalize the semantics of computer

hardware and software.

We can prove properties of these formal models.

11

We can formalize the semantics of computer

hardware and software.

We can prove properties of these formal models.

We can check – or even discover – these proofs

with mechanical theorem provers.

12

We can formalize the semantics of computer

hardware and software.

We can prove properties of these formal models.

We can check – or even discover – these proofs

with mechanical theorem provers.

But how practical is this goal?

13

ACL2

A Computational Logic for

Applicative Common Lisp

A fully integrated verification environment for a

practical applicative subset of an ANSI standard

programming language

{kaufmann,moore}@cs.utexas.edu

http://www.cs.utexas.edu/users/moore/acl2

Idea: Take a functional programming language,

axiomatize it, build a theorem prover for it, and use

it to model other computational artifacts.

14

Demo 1

15

A Few Bullets About ACL2

• Common Lisp (an ANSI standard language)

• prefix syntax of Lisp

• data types: integers, rationals, characters, strings,

lists and trees (ordered pairs)

• first order

• untyped syntax

• induction up to ǫ0 = ωωω...

16

• conservative principle of definition

• recursive definitions must be proved total

• formulas are implicitly univerally quantified

• no explicit quantification

• support for enforcing “type-like” discipline on

function calls (like PVS type conditions)

• support quantification via Hilbert-like defchoose

17

• support for the reals via Robinson’s Non-Standard

Analysis in ACL2(R)

• support some second-order reasoning via the

derived rule of functional instantiation

• support for user-defined equivalence relations

• support for congruence-based reasoning via

rewriting

• support for verified metafunctions

18

• . . .

Tomorrow’s talk will explore more about ACL2.

19

Example: Formalize a Simple Machine

• state : 〈pc, registers, stack, program〉

• instr : 〈opcode, arg1, . . . , argn〉

• step(instr, state) ⇒ state

• m1(state, n) ⇒ state

20

Demo 2

In the following demonstration we show one way to

formalize semantics and prove program properties.

There are many, including inductive assertions,

McCarthy’s functional semantics, Hoare logic,

weakest preconditions, denotational semantics, etc.

All of these can be formalized in ACL2. We chose

this method for its simplicity.

21

But can this be scaled up to problems of industrial

interest?

22

An elusive circuitry error is causing a chip used in

millions of computers to generate inaccurate results

— NY Times, “Circuit Flaw Causes Pentium Chip

to Miscalculate, Intel Admits,” Nov 11, 1994

23

Intel Corp. last week took a $475 million write-off

to cover costs associated with the divide bug in the

Pentium microprocessor’s floating-point unit — EE

Times, Jan 23, 1995

24

IEEE 754 Floating Point Standard

Elementary operations are to be performed as

though the infinitely precise (standard

mathematical) operation were performed and then

the result rounded to the indicated precision.

25

AMD K5 Algorithm FDIV(p, d,mode)

1. sd0 = lookup(d) [exact 17 8]

2. dr = d [away 17 32]

3. sdd0 = sd0 × dr [away 17 32]

4. sd1 = sd0 × comp(sdd0, 32) [trunc 17 32]

5. sdd1 = sd1 × dr [away 17 32]

6. sd2 = sd1 × comp(sdd1, 32) [trunc 17 32]

... ... =

29. q3 = sd2 × ph3 [trunc 17 24]

30. qq2 = q2 + q3 [sticky 17 64]

31. qq1 = qq2 + q1 [sticky 17 64]

32. fdiv = qq1 + q0 mode

26

Using the Reciprocal

1 2

+
+
+

.0 4

.0 0 0 0 0 8

-2.0 4
-2.

3 5.8 3 3 3 3 4
4 3 0.0 0 0 0 0 0
4 3 2.

-.1 7
3 6.

.0 4 0 8

.0 0 0 8-

.0 0 3 4

.0 0 0 0 6 6-

.0 0 0 7 9 2-
-

Reciprocal Calculation:

1/12 = 0.0833 ≈ 0.083 = sd2

Quotient Digit Calculation:

0.083 × 430.0000 = 35.6900000 ≈ 36.000000 = q0
0.083 × -2.0000 = -.1660000 ≈ -.170000 = q1
0.083 × .0400 = .0033200 ≈ .003400 = q2
0.083 × -.0008 = -.0000664 ≈ -.000067 = q3

Summation of Quotient Digits:

q0 + q1 + q2 + q3 = 35.833333

27

Computing the Reciprocal

i

2
sd sd sd

0 1
1/d

sd
i+1

= sd
i
(2 - sd d)

dy
dx

= - x
-2

y = 1
x

- d

28

top 8 bits approx
of d inverse

1.00000002 0.111111112
1.00000012 0.111111012
1.00000102 0.111110112
1.00000112 0.111110012
1.00001002 0.111101112
1.00001012 0.111101012
1.00001102 0.111101002
1.00001112 0.111100102
1.00010002 0.111100002
1.00010012 0.111011102
1.00010102 0.111011012

... ...
1.00101102 0.110110102
1.00101112 0.110110002
1.00110002 0.110101112
1.00110012 0.110101012
1.00110102 0.110101002
1.00110112 0.110100112
1.00111002 0.110100012
1.00111012 0.110100002
1.00111102 0.110011112
1.00111112 0.110011012

top 8 bits approx
of d inverse

1.01000002 0.110011002
1.01000012 0.110010112
1.01000102 0.110010102
1.01000112 0.110010002
1.01001002 0.110001112
1.01001012 0.110001102
1.01001102 0.110001012
1.01001112 0.110001002
1.01010002 0.110000102
1.01010012 0.110000012
1.01010102 0.110000002

... ...
1.01101102 0.101101002
1.01101112 0.101100112
1.01110002 0.101100102
1.01110012 0.101100012
1.01110102 0.101100002
1.01110112 0.101011112
1.01111002 0.101011102
1.01111012 0.101011012
1.01111102 0.101011002
1.01111112 0.101010112

top 8 bits approx
of d inverse

1.10000002 0.101010102
1.10000012 0.101010012
1.10000102 0.101010002
1.10000112 0.101010002
1.10001002 0.101001112
1.10001012 0.101001102
1.10001102 0.101001012
1.10001112 0.101001002
1.10010002 0.101000112
1.10010012 0.101000112
1.10010102 0.101000102

... ...
1.10101102 0.100110012
1.10101112 0.100110002
1.10110002 0.100101112
1.10110012 0.100101112
1.10110102 0.100101102
1.10110112 0.100101012
1.10111002 0.100101012
1.10111012 0.100101002
1.10111102 0.100100112
1.10111112 0.100100112

top 8 bits approx
of d inverse

1.11000002 0.100100102
1.11000012 0.100100012
1.11000102 0.100100012
1.11000112 0.100100002
1.11001002 0.100011112
1.11001012 0.100011112
1.11001102 0.100011102
1.11001112 0.100011102
1.11010002 0.100011012
1.11010012 0.100011002
1.11010102 0.100011002

... ...
1.11101102 0.100001012
1.11101112 0.100001002
1.11110002 0.100001002
1.11110012 0.100000112
1.11110102 0.100000112
1.11110112 0.100000102
1.11111002 0.100000102
1.11111012 0.100000012
1.11111102 0.100000012
1.11111112 0.100000002

29

The Futility of Testing

If AMD builds this, will it work?

A bug in this design could cost AMD hundreds of

millions of dollars.

On Sunway TaihuLight (93 petaflops = 93 ×250

operations per second), testing all possible cases

would take

2726112523746722547161199

∼ 2.7× 1024 years.

30

The K5 FDIV Theorem (1200 lemmas)

“If p and d are 64, , 15+ floating point numbers,

d 6= 0, and mode is an IEEE rounding mode, then

FDIV(p, d,mode) = round(p/d,mode).”

(defthm FDIV-divides

(implies (and (floating-point-numberp p 15 64)

(floating-point-numberp d 15 64)

(not (equal d 0))

(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

31

A Few of the 1200 Lemmas

Trunc Trunc: If i ≤ j, then

trunc(trunc(x, i), j) = trunc(x, i).

Sticky Enough: If mode is an IEEE rounding mode

with size n < i, then

round(sticky(x, i+ 2),mode) = round(x,mode).

Sticky Plus: Let x 6= 0, such that trunc(x, n) = x

and 1 + e(y) < e(x), and n+ e(y)− e(x) < k.

Then sticky(x+ y, n) = sticky(x+ sticky(y, k), n).

(Some standard hypotheses have been omitted for

brevity.)

32

The library of floating point lemmas and the main

theorem were proved with ACL2 under the direction

of two ACL2 users and the designer of the FDIV

algorithm.

The proofs took 9 weeks starting from Peano’s

axioms.

The proofs were completed before the K5 was

fabricated.

9 weeks < 2726112523746722547161199 years

The library was used in subsequent proofs.

33

By 1997, AMD had

• built software to translate their in-house hardware

design language to ACL2

• used the tool to generate ACL2 functions

modeling all the elementary floating point

arithmetic on the soon-to-be fabricated AMD

Athlon microprocessor

34

• tested the ACL2 functions by running them on

AMD’s standard floating-point test suite (> 100

million arithmetic problems) and compared the

answers to AMD’s design simulator

• proved the ACL2 functions compliant with the

IEEE Standard

• found (and fixed) 3 design errors not exposed by

the 100 million tests

35

Other Early Industrial Users of ACL2

• Motorola: DSP and microcode proofs

• AMD: floating-point on Opteron

• Rockwell-Collins: silicon JVM chip, AAMP7

crypo-box, Greenhills OS

• IBM: Power 4 FDIV and SQRT

• Sun Microsystems (via contract): Sun JVM class

loader and byte-code verifier

36

Integration into Design Workflow

In 2007, Centaur Technology, Inc., challenged the

ACL2 community to verify its floating-point adder:

• handles single (32-bit), double (64-bit) and

extended (80-bit) additions

• pipelined to deliver 4-results per cycle

• 33,700 lines in 680 Verilog modules

• 1074 input signals (including 26 clocks) and 374

output signals

37

Integration into Design Workflow

In 2007, Centaur Technology, Inc., challenged the

ACL2 community to verify its floating-point adder:

Done! After exposing and fixing one very rare bug.

(The bug occurred on exactly one pair of 80-bit

inputs, i.e., 1 case of 2160 cases.)

38

ACL2 at Centaur Today

ACL2 is an indispensable part of the Centaur design

process

Centaur FV team consists of 3 full-time employees

and a couple of interns

39

Centaur’s current family of x86-based

microprocessors is called VIA Eden

Centaur has an ACL2 specification of the Eden

subset of the x86

Validated by routinely running millions of tests

comparing ACL2 x86 to Intel, AMD, and Centaur

hardware

The ACL2 tool-chain translates the entire Eden

design (700,000+ lines of Verilog) into a formal

object in a few minutes

40

The translated model is validated by running

millions of tests against Cadence NC Verilog and

Synopsys VCS Verilog simulators

41

Two main applications:

• proving correctness of parts of the RTL design

wrt behavioral spec

• proving correctness of microcode (typically no

longer than several hundred lines)

All proofs are re-run nightly (on a cluster of 154

CPUs with a total of 2TB RAM)

“Bugs introduced today are found tonight and fixed

tomorrow.”

42

Centaur uses ACL2 to build custom tools for

Verilog designers

Mechanized formal reasoning and theorem proving

are taken for granted

Centaur’s Verilog tool-chain is distributed with

ACL2 and is used by Intel and Oracle

43

Other Ongoing Industrial Projects

• AMD (transaction protocols)

• Intel (Elliptic curve crypto: computationally

surveyable proofs that 2255 − 19 is prime and

Curve25519 is abelian)

• Kestrel Institute (Android apps)

• Oracle (floating point)

• Rockwell-Collins (LLVN)

44

45

46

47

48

49

50

X86 ISA in ACL2 (Hunt and Goel)

51

x86 ISA in ACL2

Purpose of Model: Verifying binary machine code

and “build-to” spec

Performance:

user level: ∼ 3.3 million ips

system level: ∼ 912,000 ips

52

ACL2 Support for Industrial Projects

There have been over 1000 changes to ACL2 since

Centaur started using ACL2 in May, 2009. Of

those, these were requested by Centaur:

Changes to Existing Features 95

New Features 44

Heuristic and Efficiency Improvements 22

Bug Fixes 72

Changes at the System Level 18

Total due to Centaur 251

53

Industrial Wish List

• faster execution speed of models in the logic

• more automation (esp in lemma/defn discovery)

• better ways to view large formulas

• scripting capabilities

• ability to build GUIs

54

Things Our Industrial Users Haven’t
Asked For

• quantifiers

• higher-order functions

• strong typing

55

General Challenges

What is the spec of given piece of software?

What does “security” mean?

Can concurrency be made tractible?

Can modern computing devices be virtualized?

Designers are faced with many problems besides

functional correctness (e.g., timing, power use, area,

memory, pin-out): how can formal methods

contribute?

56

General Challenges

What is the spec of given piece of software?

What does “security” mean?

Can concurrency be made tractible?

Can modern computing devices be virtualized?

Designers are faced with many problems; how can

formal methods contribute?

Because digital artifacts are formal mathematical

systems these are mathematical questions.

57

General Challenges

What is the spec of given piece of software?

What does “security” mean?

Can concurrency be made tractible?

Can modern computing devices be virtualized?

Designers are faced with many problems; how can

formal methods contribute?

Defining concepts and stating conjectures is as

worthy a mathematical task as proving theorems.

58

What Mechanical Reasoning Requires
of the User

• accepting the constraints of its formal

logic/language

• precision

• ability to digest new ideas and express them in

formal terms

• good proof-strategic judgement

59

• mastery of your own complex theories (lemmas

and definitions)

• creativity, especially in connection with inductive

arguments and generalization and abstraction of

new concepts

• collaboration, especially with designers and other

verification team members

• respect for the designers and engineers producing

remarkably fast, remarkably power-efficient, and

almost perfect designs

60

What It Doesn’t Require of the User

• accuracy in manipulating formulas

• perfect recall of the side-conditions for use of a

lemma or strategy

• deep understanding of electronics or hardware

design

61

Why ACL2 is Successful in Industry

• that was the goal of the project

• efficient, executable logic/programming language

with native verifier

• dual-use bit- and cycle-accurate models

• access to Common Lisp programming (via trust

tags)

• automatic prover with “a human in the loop”

62

• encourages development of domain-specific

automatic provers allowing proof maintenance as

designs evolve

• rugged, well documented, free, open source form,

many useful books, and a fairly unrestrictive

license

• coherent user community devoted to making

mechanized verification practical

63

• industry needs help: people with these skills are in

demand, they are paid well, and become “mission

critical” as soon as new bugs are exposed by their

efforts

64

Summary

Industry is using a mechanized theorem prover to

prove important theorems about critical hardware

and software.

The fact that the prover supports a programming

language means models have dual use: for

prototyping and establishing properties via proof.

Upcoming Talk: Tomorrow I will give a tutorial on

how ACL2 works and how people use it.

65

