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Structure of Talk

* Ecology of Emerging Pathogens
e Agricultural intensification
* Habitat fragmentation and emergence
* The role of the wildlife trade
* Rate of exposure and cross immunity

* Economics of Emerging Diseases
* Cost-benefit at each stage of intervention
* Overall cost-benefit
* Missing costs and additional benefits

* Evolution of Emerging Pathogens
* Will Covid-19 become more or less virulent?
* Insights from an avian emerging pathogen
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;Probability of infection

Prevalence in reservoir

* Reservoir species (1 or more)
* Host population dynamics

* Density dependence of transmission
* Transmission mechanism
* Environmental influences
* Agricultural practices

Reservoir-human contact rate

Direct « Transmission mechanism

+ Reservoir population abundance
Directand « Spatial overlap
veetor . Hyman risk behaviors

+ Vector community
Vector * Vector abundance
« Biting rates & preferences

Food- « Harvest rate (agriculture or hunting)
borne  « Human consumption rate
« Species preference

* Human immune defenses

* Dose

+ Pathogen genotype (degree of
adaptation to humans)
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« Duration and proximity of contact

« Vector competence
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+ Butchering
« Food-safety practices
+ Cooking practices
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Science, 2009.
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1 .Ecology of Emerging Pathogens

 Agricultural intensification

* Habitat fragmentation and emergence
* The role of the wildlife trade

* Rates of exposure and cross immunity



DISEASE BY NUMBERS

Global distribution of emerging zoonotic diseases (1940-2012) Death tolls
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Main drivers of disease emergence:

THE REPORTING BIAS - Well developed healthcare systems are more likely to identify and report cases
POPULATION DENSITY = Fewer people mean a smaller chance of 3 pathogen transferring from animals to humans
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ANIMAL SPECIES DENSITY - Fewer animals mean a reduced source of potential pathogens. : v
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Geographic distribution of Henipavirus outbreaks and fruit bats of Pteropodidae Family
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/oom in on the farm at the center
of the Nipah outbreak






The Malaysian epidemiologist, Dr KW.Chang, who
reported and investigated the outbreak




Nipah virus prevalence in bats
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Pulliam et al 2008.
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Mango trees used to shade pig barns and provide a second crop to the farmer

w...........and additional food for the pigs
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Nipah virus in Malaysia, Pulliam et al 2008
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Proportion of section capacity
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Hendra virus emergence from flying foxes R. K. Plowright et al. 3705

2009. personal communication).

AUSTRALIA
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Figure 2. Continuously occupied flying fox camps and HeV spill-over locations in relation to human population density. ‘Spec-
tacled’, ‘black’ and ‘grey headed’ refer to flying fox species ([26 -32]; P. Eby 2004, unpublished data; L. Shilton & D. Westcott
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Figure 3. Herd immunity and epidemic size. Relationship
between initial herd immunity, epidemic amplitude (black
triangles) and epidemic duration (red circles) in a stochastic
metapopulation simulation (Ny= 10000, B= 4.76E — 05,
y=0.143, h= 200, ¢= 0.16). The deterministic threshold
number of susceptibles required for disease invasion n this
model system 1s approximately 3000 (initial proportion
immune = (.7). When virus is mtroduced into a population
with initial herd immunity approaching the threshold for
invasion, low amplitude, persistent smouldering epidemics
may result. When virus is introduced into a more susceptible
population, high amplitude, shorter epidemics may result.
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Agricultural intensification, priming for persistence and the emergence of Nipah virus: alethal bat-borne zoonosis, Volume: 9, Issue: 66, Pages: 89-101, DOI:
(10.1098/rsif.2011.0223)

Pulliamet al (2011) RoyalSociety Interface.
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Epidemic Enhancement in Partially Inmune Populations

Juliet . C. Pulliam™, Jonathan G. Dusholi™, Simen A. Levin’, Andrew P. Dobsen’

1 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, Mew Jersey, United States of America, 2Fogarty International
Center, National Institutes of Health, Bethesda, Maryland, United States of America
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p, is the ratio of duration of infectiousness to duration of immunity
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Figure 1. Forest cover maps and locations of first infection events in humans. Forest cover maps and
locations of independent first infection events in humans (triangles, see Table 1) in Central (a) and West (b)
Africa. The insets indicate the two African regions considered in this study. Legend in (b) is the same than in
(a). Maps generated by the authors using ARCGIS 10.2-Version 10.2.0.338, licensed to Politecnico di Milano.
The license term can be found on the following link: http://www.esri.com/legal/software-license.

SCIENTIFIC REPg}RTS

OFEN The nexus between forest
fragmentation in Africa and Ebola
- virus disease outbreaks

Received: 17 August 2016 Maria Cristina Rulli!, Monia Santini?, David TS Hayman? & Paoclo D’Odorico**¢
Accepted: 22 December 2016



Sites of Ebola outbreaksin Centraland West Africa
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What happens to pathogens in the remaining patches of forest?

Null expectations for disease dynamics
in shrinking habitat:

dilution or amplification?

Christina L. Faust*, Andrew P. Dobson”, Nicole Gottdenker®, Laura S.P.
Bloomfield’, Hamish 1. McCallum®, Thomas R. Gillespie’, Maria Diuk-
Wasser’, and Raina K. Plowright’

Phil Trans Roy Soc (2017)
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Transmission across the core-matrix boundary
Faust, McCallum, Dobson et al, Plowright, Ecology Letters (2017)
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Transmission across the core-matrix boundary Gillespie stochastic case
Faust, McCallum, Dobson et al, Plowright,
Ecology Letters 2017
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epidemic size

Transmission across the core-matrix boundary
Faust, McCallum, Dobson et al, Plowright.
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LETTER

doi:10.1038/nature22975

Host and viral traits predict zoonotic spillover
from mammals

LETTER

Kevin J. Olival', Parviez R. Hosseini', Carlos Zambrana- Torrelio!, Noam Ross', Tiffany L. Bogich! & Peter Daszak!
a Proportion of zoonotic viruses b Total viral richness
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Figure 1 | Observed viral richness in mammals. a, b, Box plots of
proportion of zoonotic viruses (a) and total viral richness per species (b),
aggregated by order. Data points represent wild (light grey, n =721) and
domestic (dark red, n=32) mammal species; lines represent median,
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Legal registered wildlife trade through Singapore, 1976 — 2015.
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Figure 2 Annual animal imports from Singapore to the United States (A) and China (B) as recorded by CITES (Convention on
International Trade in Endangered Species) The data start when CITES was first set up 1975. Data are the cumulative number of
transactions (within each year), for Species listed under Appendix 1, Il and Ill. The records are predominantly for mammals, birds,
fish and reptiles. They do not include fish harvested for food.
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Figure 3 The amount of viral species richness discovered as the number
of animals sampled increases for macague monkeys (green) and
Pteropid bats (red). Solid lines are based on rarefaction; dotted lines
are extrapolations (using double sample size). Dots A (samples 31,
richness 39) and D (samples 13, richness 5) represent 50% sample of
sample coverage and dots C (samples 1925, richness 284) and F
(samples 2075 and richness52) represent 99% of sample coverage. Dots
B and E are the observed viral species richness. Shaded areas represent
95% confidence intervals. Data used for plots obtained from (20, 21).

OPEN QUESTION: What are levels of cross-immunity
Between these viruses? How many crossover and fade-out?
What levels of immunity does this build-up in people working
in the wildlife trade?

Does this form a barrier or facilitate persistence/emergence?
(sensu Pulliamet al, above and PLOS-One.)



Pulliamet al (2011) Royal Society Interface.
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Agricultural intensification, priming for persistence and the emergence of Nipah virus: alethal bat-borne zoonosis, Volume: 9, Issue: 66, Pages: 89-101, DOI:
(10.1098/rsif.2011.0223)

So is this also happeningwith people working in the wildlife trade..? Enhanced by cross immunity?



VIROLOGY

What Links Bats to Emerging
Infectious Diseases?

Andrew P.Dobson

28 OCTOBER 2005 VOL 310 SCIENCE www.sciencemag.org

Published by AAAS Bats, the great natural reservoir for viruses. Knowing more about bat ecol-

ogy and immunology is crucial to controlling spillover of viruses and related
diseases to humans.

Brook, C. And Dobson, A. (2015) Trends in Microbiology.



Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence
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Cara E Brook Is a corresponding author, Mike Boots, Kartik Chandran, Andrew P Dobson, Christian Drosten,
Andrea L Graham, Bryan T Grenfell, Marcel A Miiller, Melinda Ng. elife/48401. 2020



2. Economics of Emerging Diseases

» Cost-benefit at each stage of intervention

* Overall cost-benefit
* Missing costs and additional benefits



Summary of prevention costs, benefits,
and break-even probability change

ITEM VALUES (2020 $)
Expenditures on preventive measures
Annual funding for monitoring wildlife trade (CITES+) $250-$750 M
Annual cost of programs to reduce spillovers $120-$340 M
Annual cost of programs for early detection and control $217-$279 M
Annual cost of programs to reduce spillover via livestock $476-$852 M
Annual cost of reducing deforestation by half $1.53-$9.59B
Annual cost of ending wild meat trade in China $1948B

TOTAL GROSS PREVENTION COSTS (C) $22.0-$31.2B

Ancillary benefit of prevention

Social cost of carbon $36.5/tonne
Annual CO, emissions reduced from 50% less deforestation 118 Mt
Ancillary benefits from reduction in CO, emissions $431B

TOTAL PREVENTION COSTS NET OF CARBON BENEFITS (C)  $17.7-$26.9 B

Damages from COVID-19
Lost GDP in world from COVID-19 $56T
Value of a statistical life (V) adjusted for COVID-19 $5.34Mor $100M
mortality structure
Total COVID-19 world mortality (Q,) forecast 590,643
by 28 July 2020, 50th percentile with 95% error bounds [473,209,1,019,078]
Value of deaths in world from COVID-19=Q, = V
Lowest ($5.34 M = 2.5th percentile mortality forecast) $25T
Middle ($10 M = 50th percentile mortality forecast) $59T
Highest ($10 M < 97.5th percentile mortality forecast) $10.2T
TOTAL DISEASE DAMAGES (D):
Lowest ($5.34 M x 2.5th percentile mortality forecast) $8.1T
Middle ($10 M = 50th percentile mortality forecast) $11.5T
Highest ($10 M < 97.5th percentile mortality forecast) $158T

The break-even change in annual probability of pandemic satisfies C = AP < D,

where P, = benchmark probability of pandemic; P, = probability of pandemic with
prevention efforts in place; AP = P, = Py; and %AP = (AP/P,) = 100.

If Po=0.01,C = $30.7 B,and D = $11.5 T (most likely scenario, ignoring ancillary benefits
of CO, reductions), prevention results in net benefits if it decreases P by 26.7% to
P,=0.00733. Using other values of C, D, and P results in %AP ranging from 11.8% to
75.7%; only one scenario has a %AP exceeding 50%. See supplementary materials.
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Figure 2: COVID-19 Damages and Total Gross Prevention Costs (million S)
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Annual costs of preventing future pandemics from wildlife are
tiny compared with costs of the Covid-19 crisis
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Number of Veterinary Staff

First line of defense — veterinarians!
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Veterinary Staff / Citizen

Relative abundance of front-line defenders
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Data were absent from the OIE database for several nations (including China and Russia).
The ratio of veterinarians to civilians plotted against the nation’s area. Countries are
color- coded based on World Bank income categories.



3. Evolution of Emerging Pathogens

* Will Covid-19 become more or less virulent?
* Insights from an avian emerging pathogen



Mutation has given rise to multiple strains that characterize cluster in different locations

When will we see selection for changes in virulence?
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Natural habitats of house finches




House Finches were introduced
on Long Island in 1940
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A Tractable Disease System:
MG In House Finches

&, '
£ - Mycoplasma _
- “‘ gallisepticum House Finch
= MG Carpodacus mexicanus
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Mycoplasmal conjunctivitis

 caused by the bacterium Mycoplasma gallisepticum
« found in domestic poultry worldwide

 novel strain infects House Finches

* clear external clinical signs

» clinical signs are closely related

to presence of pathogen

Humans aren’t only species at risk from emerging pathogens
— monitoring focuses on humans and livestock....intervene as soon as possible
model systems can provide importantinsights not otherwise available



Wide Geographical Distribution of Participants

- most data from the
north-eastern U.S.

- high-density regions would
swamp patterns in other
areas if averaged

- disease arrived at different
times in different regions




Disease Spread Rapidly Through
Eastern North America

After 10 month After 2.5 Years



House finches are pest in wineries...very
nandy for sponsorship!

Upstate new York Wine.... Delicious California wine!!

SOJOURN
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PCR to determine infection status using
MG-specific polymerase chain reaction (PCR)

David Ley, NCSU

bp- + 1 2 34 56 7 8 9 10




A Tractable Disease System

-- disease response can be measured non-invasively.

Score




Time course of infection in individual infected birds (days)
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Figure 2. Relationship between clinical signs of house finches at
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Transmission potential
infectiousness (o naive house finches

mtervals after conjunctival inoculation with the house fmch strain
of M. gallisepticum and the degree to which they were infectious
to naive house finches. The digit by each point represents the
number of davs post imoculation.

Dhondt, et al (2008) Avian Pathology, 37, 635-640



How do Ro and appearance of symptoms effect ability to control outbreaks?

15
14 -
138 =
12 -

basic reproduction number

Ry
O =2 NWHMOUWONO®

Covid-19

0% 20% 40% 60% 80% 100%

0 = proportion of infections that occur prior to
symptoms or by asymptomatic infection.

Christophe Fraser et al. PNAS 2004;101:6146-6151
©2004 by National Academyof Sciences



Virulence in Time and Space

MG emergence in House FInches
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Eastern & Western M. gallisepticum lineages
Independent

- Evolution of spatial variation in virulence is possible because genetic variation in
M. gallisepticum is spatially structured

& &
0‘ - —

Eastern North America California
Y 1994 House Finch “Index Strain”

in prep.



Why does virulence evolve in two directions?
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Figure 1: Virulence dynamics over time in two regions -- near the epicenter in eastern North
America (black line), and the west coast (gray line) -- for the bacterium Mycoplasma gallisepticum

after its emergence in the House Finch (Haemorhous mexicanus). For perspective, the projection of
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The model
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Virulence Evolution: the model

p op

(1+ pa) (1L+a)
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ES Virulence and Relative Timing of Transmission

(P)
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Osnas and Dobson, 2010, Biology Letters




Evolution of virulence when transmission occurs before disease
Erik E. Osnas and Andrew P. Dobson, Biology Letters
Published:10 February 2010https://doi.org/10.1098/rsbl.2009.1019
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Evolution of virulencewhentransmission occurs before disease, Volume: 6, Issue: 4, Pages: 505-508, DOI: (10.1098/rs bl.2009.1019)


https://royalsocietypublishing.org/doi/10.1098/rsbl.2009.1019
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Pairwise invasibility plots (PIPs) show that adding the empirically observed effects of incomplete immunity to a baseline model
with no immunity effects (A) results in an almost twofold increase in optimal virulence (B). Shaded areas show parameter space
for which a new mutant introduced at very low densities was able to invade a population with the resident pathogen present at
equilibrium densities, and asterisks mark the Evolutionary Stable Strategy (ESS) for each model.

Fleming-Davies, Williams, Dobson, Dhondt, Hawley, (2018) Science.



A message from the birds...

* Once herd immunity begins to make its presence known...

e Covid will start competing within the immune population it has created
* This will place selection pressure on the virus to change

* Transmission before virulence is expressed selects for increased virulence
* Immunity selects for asymmetrical immunity

* Implications for vaccine development..?



Prevention & control
examples

Stages of
pathogen spread
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Conclusions

1) We will see future
emerging pathogens

2) Cost of preventionis
well worth the
investment.

3) Viral evolution will
speed up as herd
immunity rises, it
could go either way..

Cost of Preventing The Next
Pandemic Just 2% Of Covid-19 Bill

Estimated cost of containing future pandemic
compared to Covid-19's economic damage

Estimated spending needed
—1 over the next 10 years —
to prevent a future pandemic

~ Total estimated economic
damage from Covid-19

$260b

Source: Dobson et al, Science 2020

DIOIO. Forbes Statista¥as



Pandemic Prevention — a Ciimate Ssolution

Prevention starts at the source.
Forests provide a natural shield
that prevents people from
contracting animal viruses, like
COVID-19, MERS, and SARS. When
trees are cut down, viruses escape
with the wildlife, who come into
contact with livestock and people.

Similarly, unregulated wildlife trade

it will cost the US only brings people into contact with
animal viruses.

(less than 1% of what it spent
controlling COVID-19 this year)

Investing $30 billion in a 10-year plan to
reduce deforestation, regulate wildlife trade,

R
& %

and contain viruses through early detection
could prevent another global tragedy and &
That's great! But HOW? save trillions of dollars in disease control.
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GET THEE AWAY,
CORONAVIRUS!

THIS IS
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