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|. HANDLING PROBABILITY DISTRIBUTIONS IN PREHISTORIC TIMES



e Working with a probability distribution function p : R — R requires the
knowledge of quantities such as its mean and variance

= / ep(a)do, 02 = / 2 p(z) dx — 2,
R R

or, for real a, the probability

a

P((—oo,a)) =/_ p(x) dmZARl(_m’a)(w)p(x) dax.

In short, the knowledge of integrals/expectations

/R F(z)p(z) dz

for relevant real-valued functions F'.
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e Before computers were widely available, these integrals were calculated
once and for all (in general by numerical quadrature). ..

e ...and then compiled in tables such as ...



t Table

cum. prob ts0 ts t s tes too tos tors oo T 905 t 999 t 9995
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001
df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4,781
10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300
z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291
0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%
Confidence Level




e The use of tables has clear limitations. Among others:

-+ It makes you to restrict your attention to a small bunch of distributions
(standard normal, Student, x2, ...)

Such a small bunch may be sufficient to solve many typical statistical pro-
blems in a frequentist framework, but not in a Bayesian framework. In Ba-
yesian statistics the posterior distribution changes with the available data.
Bayesian statistics only took off once the 'tabulating’ approach was super-
seded.

+ The class of integrands F' is also restricted (in the example above to
1(_ooq) for 11 values of a).



e In the multivariate case where = € R%, d > 1 the interest is computing
quantities

/ F(2)p(z) de,
Rd

(for instance

P(Q) = /R o) ple) da).

These integrals/expectations cannot really be tabulated.

e Worse than that: unless d is small, those integrals cannot even be com-
puted accurately by conventional cubature rules. [A (tensor product) rule
with three nodes in each variate requires almost six thousand functions
evaluations in R19 and in excess of three billion function evaluations in
R20] [The curse of dimensionality (Bellman 1957).]



Il. AN ALTERNATIVE USING COMPUTERS:
MONTE CARLO



e Under fairly general assumptions, the law of large numbers shows that
the integral we wish to compute, i.e.

/ F(2)p(z) de,
]Rd

is the (almost sure) limit of the random sequence

%(F(Xl) -I-----I-F(XN)),

where the X, are independent random variables each with pdf p.

e This suggests the (naive) Monte Carlo quadrature rule

/R F@p(@)de =~ (P + -+ Fley),

where x,, are independent draws of a random variable with pdf p. [Note
equal weights.]



e Archetypal example: p uniformin [0, 1] x [0, 1], F(z) = 1a(xz), Q2 C
[0,1] x [0, 1],

Area(2) ~ % #H{xy € Q}.

e Error bounds for the naive rule are O(1/+/N) (computers needed!).

e [he good news: bounds are independent of dimension d and regularity
of F.

e The fly in the ointment: for most probability distributions, generating in-
dependent draws is not feasible.
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e An alternative. The law of large numbers that underpins the formula

| @@ do= () + -+ Fay)),

Rd N

also holds if the random variables X, are not assumed to be independent,
but form a Markov chain for which the pdf p is invariant. [This roughly
means that X,,, ; depends on X, but in such a way that, if X, has pdf p,
so does X, 1.]

e Metropolis, Rosenbluth, Rosenbluth, Teller and Teller showed in 1953
that it is always possible to construct a suitable Markov chain for which
realizations xz,, of the random variables X, may be easily generated in a
computer.
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The Random Walk Metropolis algorithm. Choose a value h > 0. Once X,
has been defined (n = 0,1,...):

e Define the proposal X;;Jrl = Xn+ hZ, where Z, is standard normal
(and independent from past). [Hence the name random walk.]
e [Accept/reject mechanism.] Define U,, ~ U/[0, 1] and then

- If a(Xp) = P(X;_|_1)/P(Xn) > Unp, set X1 = X;;_|_1 (the

proposal has been accepted). [a is the acceptance probability.]

— Else, set X,,; 1 = X, (the proposal has been rejected).
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e The algorithm will compute expectations for (almost) arbitrary F'(x) and
p(x) in any number of dimensions d.

e If the correlation between the random variables X, increases, the num-
ber of samples N to achieve a target accuracy of the quadrature rule has
to be increased.

e A large value of A typically leads to many rejections (particularly so in
high dimensions) and therefore to large correlations because, when the
proposal is rejected X, 1 = X,.

e A small value of A results in the proposal X,j;+1 = X, + hZ, being near
Xn, thus increasing the probability of acceptance, but then the correlations
in the chain are also high.
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e Roberts, Gelman and Gilks 1997: when the target is a product of d
identically distributed components. ..

+ h has to be chosen proportional to 1/d.

+ Algorithm needs O(d?) work to make @(1) moves in the state space
R,

+ The exploration of state space is optimal when the acceptance rate is
0.234 ..., regardless of the specific distribution being sampled.
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e Idea to improve the algorithm: use proposals that avail themselves of
information on the target pdf p.

e The Hybrid Monte Carlo (HMC) method is one (among many others)
algorithm based on that idea.

e Introduced in the Physics literature by Duane, Kenney, Pendleton and
Roweth 1987.

e Neal made it known to the Statistics community, where the acronym HMC
is now read as Hamiltonian Monte Carlo and the algorithm and its variants
are extremely popular.

e Ideally HMC offers the possibility of proposals that are far away from the
current state and yet are accepted with high probability.
15



l1l. A FIRST SMALL DETOUR: STATISTICAL PHYSICS
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e For a conservative mechanical system, Newton’s second law reads

Mq= —-VV(q),

(g € R4 collects the positions, d is the number of degrees of freedom, the
matrix M contains the masses and V' is the potential energy).

e As t varies, the total energy (1/2)q(t)1 M¢(t) + V (q(t)) is conserved.

e Now assume that the system, rather than being isolated from the env-
ironment, is inside a heat bath at constant (absolute) temperature 1/5.
(Think of a protein inside the human body.) Molecules of the heat bath hit
the system and interchange energy with it.

e Keeping track of all interchanges is impossible and a statistical descrip-
tion is needed. (Maxwell, Boltzmann, Gibbs,...)
17



e Statistical mechanics uses the Hamiltonian formulation of mechanics.
This introduces a new independent variable p = Mqg (momentum). The
space R? x R? of pairs (g, p) is the phase space.

Newton’s law is rewritten as the first-order system

¢=M"'p, p=-VV(g)
l.e. in the symmetric form

. oH : oOH
§ =

— a—pa — —a—qa
where H(q,p) = (1/2)p! M—1p+V(q) is the total energy of the system
expressed as a function of ¢ and p.

e In a heat bath ¢(t), p(t) evolve so as to preserve the canonical probabil-
ity measure in phase space: du = (1/2)exp(—BH(q,p)) dqdp, where
Z is the normalizing constant [pq., pa €xp(—BH)dqdp.
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e In view of the product structure

exp(—BH(q,p)) = exp ( — 5(1/2)pTM_1p) X exp ( — BV(q)),

q and p are stochastically independent.

e The momenta have a Gaussian density (proportional to)

exp(—B(1/2)pt M~ 1p)

(Maxwell’s distribution). From here it follows that the average kinetic energy
is 1/(28) x d: the absolute temperature 1/ is twice the average kinetic
energy per degree of freedom.

e The positions ¢ have the Boltzmann density « exp(—8V (¢)): minima
of the potential energy are modes of the probability. As the temperature
diminishes those minima carry more and more probability.
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l11l. A SECOND SMALL DETOUR: SYMMETRIES OF THE
HAMILTONIAN DYNAMICS.
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e For the Hamiltonian system

0H . 0H
with arbitrary H, denote by ¢; : R? x R — R? x R the solution flow, i.e.

©¢(q, p) is the value at time ¢ of the solution with initial values (g, p) at the
initial time ¢ = 0. The flow has important geometric properties.

e For each t the flow preserves volume in phase space (Liouville): V2 C
R x R4, ;(£2) has the same 2d-dimensional measure as 2. [In fact, the
flow has a stronger property: symplecticness (Poincaré).]

e The flow preserves energy: H(pi(q,p)) = H(q,p).

e For the special form H(q,p) = (1/2)p! M~1p+ V' (q) we found above,

the flow is reversible: if o:(q,p) = (g*, p*), then ¢:(¢*, —p*) = (q, —p).
21



e As a consequence, the flow preserves the canonical probability measure
[di < exp(—BH(q,p)) dqdp]; i.e. V2 C R?% x RY, () carries the
same probability as €2. [But note that the Hamiltonian dynamics does not
describe the motions of the system in the heat bath.]

e We are now ready to leave the detours and go back to our task: given

a target probability distribution with density p(z) in R? construct a Markov
chain that has it as an invariant distribution.
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V. THE IDEA BEHIND HAMILTONIAN MONTE CARLO SAMPLING
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A Markov chain that does the job. [T > O is a parameter.]
e Write ¢ instead of x and p(q) = exp(—V (q)).

e In the phase space of the variable (g, p) consider the Hamiltonian system
associated with H = (1/2)p!'p 4+ V(¢) and the solution flow .

o If Qn is an element of the chain, then @,,4 1 is defined as follows.

+ Generate P, from pdf o< exp(—(1/2)p!p)), independent from @y,
(and from past).

+ Define (Qn4-1, Pat1) = ©7(Qn, Pn) (P41 is discarded).

e Proof: the Hamiltonian flow o1 preserves canonical probability measure
dp o< exp(—(1/2)p’ p — V(q))dgdp.
24



e Good news: by suitably choosing T, @,,4-1 may be far away from Q
(implications: low correlation, chain explores quickly R%).

e Bad news: o7 only known in trivial cases.

e Good idea: use a numerical approximation W to o, i.e. at each step
of the Markov chain, integrate numerically the Hamiltonian dynamics with
step-length h in the interval 0 < ¢ < T.
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e Additional bad news: No numerical integrator simultaneously preserves
volume and energy (Ge and Mardsden 1988). Thus no W preserves the
canonical distribution .

The construction of integrators that preserve symmetries of the system
being integrated is the aim of Geometric Integration (SS 1997).

There exist explicit integrators that preserve volume and are reversible.

e Additional good idea: Introduce an accept/reject mechanism so as to
enforce exact conservation of L.

We have finally arrived at HMC:
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VI. HAMILTONIAN MONTE CARLO SAMPLING
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o If O, is an element of the Markov chain, then @,, ; is defined as follows.

+ Generate P, from pdf oc exp(—(1/2)p!p)), independent from @y,
(and from past).

+ .F.ind (QjH_l, 15n_|_1) by ipteg_rating numgrically, frqm the initial cond-
ition (Qn, Pr), the Hamiltonian dynamics. The integrator must be
volume-preserving and reversible.

+ Accept the proposal Q7 11 with probability

min (Lexp (= (H(Qfy 1, Pot1) — H(Qn,Pn)]))-

(Upon acceptance Q41 = @}, 1, upon rejection Q,,+1 = Qn; on
both cases P, ; is discarded.)

28



e Since H(@T(Qn, Pn>) — H(Qn, Pn)s

H(Qp 41 Poy1) — H(Qn, Py) = H(Qp 41, Poi1) — H(pt(Qn, Pn))

is the energy error in the integration. Hence, as the time-step approaches
O with T fixed, the acceptance probability approaches 100%. (But the
integration becomes more expensive.)

e The algorithm thus provides the possibility of generating proposals away
from the current state (by suitably choosing T') that may be accepted with
high probability (by suitably reducing the step-size).

e The Stormer/Verlet/leapfrog algorithm is the used in practice, but better
alternatives exist (particularly for large problems) (joint work with Blanes,
Casas, Akhmatskaya, etc.).
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e In the product scenario, Beskos, Pillai, Roberts, SS and Stuart 2013
show (for integrators that are second order accurate):

-+ h has to be chosen proportional to 1/d1/4.

+ Algorithm needs O (d®/#) work to make ©(1) moves in the state space
RY,

+ The exploration of state space is optimal when the acceptance rate is
0.651 ..., regardless of the specific distribution being sampled.
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