Center for Complex Fluids Engineering

Electrohydrodynamics of emulsion droplets

Lynn M. Walker

Rajarshi Sengupta, Javier Lanauze and Aditya S. Khair

Carnegie Mellon University

4th Edwards Symposium, Cambridge, September 4, 2019

Surfactant-laden fluid-fluid interfaces under electric fields

Kang et al. (2011)

Suspension Loaded Drops

Squalane drop with 3.3 g/L carbon black particles + 2pph OLOA in silicone oil

What causes this breakup?

Drop: Carbon black particles suspended in squalane

Particles: Monarch 280 carbon black

Primary particle size: 30 nm Primary aggregate size: 200 nm

3.3 g/L carbon black (fixed) 0.2% volume fraction

Surfactant concentration affects suspension stability

2 pph OLOA (unstable: steric) 30 pph OLOA (stable: electrostatic)

Goal: How does suspension stability affect drop breakup?

5 Bleier et al., J Colloid and Interface Sci 2017

Roadmap of experiments

Medium phase: Silicone oil (5000 cSt)

Pure squalane

30 pph OLOA (stable suspension)

2 pph OLOA (unstable suspension) Equivalent OLOA (0.12 wt%) No particles

Equivalent OLOA (0.008 wt%) No particles

Pure squalane drop breaks via tip streaming

Drop containing a stable colloidal suspension

30 pph equivalent OLOA No particles

$$E_{\infty} = 2.5 kV/cm$$

0.25 mm

30 pph OLOA (stable)

Breakup mode: End pinching

Particles do not qualitatively change breakup mode

Non-axisymmetric breakup at larger field

30 pph OLOA (stable)

Breakup mode: Charged lobe disintegration

Again, particles do not qualitatively change breakup mode

Drop containing an unstable colloidal suspension

 $E_{\infty} = 2.5 kV/cm$

2 pph equivalent OLOA No particles

Breakup mode: End pinching

2 pph OLOA (unstable)

Non homogeneous breakup

Particles do qualitatively change breakup mode

Unstable suspension at larger field

Unstable suspension again yields non homogeneous breakup

Summary of experiments

Leaky Dielectric Model

• Small electrical conductivity (impurity); bulk is electroneutral

Taylor, 1966

Leaky Dielectric Model

- Interface is charged under an electric field
- Electric traction acts along the interface and deforms the drop
- Drop breaks above a critical field

Boundary Integral Computations to predict drop deformation

14 Taylor, 1966

Computing nonlinear deformation

Boundary Integral Method: Convert differential equations in the domain to integral equations along the boundary

Electric Field

$$abla^2 \phi = 0$$

Jump in Normal Field

Interfacial Charge Transport

$$\frac{1}{S}E_{n,o} - E_{n,i} = \frac{1}{S}q \qquad \qquad \frac{1}{R}E_{n,i} - E_{n,o} = \frac{Re_E}{Ca_E}\frac{\partial q}{\partial t} + Re_E\nabla_s\cdot(uq)$$

Fluid Flow

$$abla^2 \boldsymbol{u} =
abla p \quad \nabla \cdot \boldsymbol{u} = 0$$

Boundary Integral Method: Convert differential equations in the domain to integral equations along the boundary

Electric Field

$$\boldsymbol{E}^{\infty}\cdot\boldsymbol{n}+rac{1}{4\pi}\oint_{A}rac{\boldsymbol{r}\cdot\boldsymbol{n}}{r^{3}}\Delta E_{n}dA=rac{1}{2}(E_{n,o}+E_{n,i})$$

Jump in Normal Field

Interfacial Charge Transport

$$\frac{1}{S}E_{n,o} - E_{n,i} = \frac{1}{S}q \qquad \qquad \frac{1}{R}E_{n,i} - E_{n,o} = \frac{Re_E}{Ca_E}\frac{\partial q}{\partial t} + Re_E\nabla_s \cdot (uq)$$

Fluid Flow

$$oldsymbol{u}_o = -rac{1}{4\pi(M+1)} \oint_A \Delta oldsymbol{f} \cdot oldsymbol{J} \, dA + rac{3}{2\pi} rac{M-1}{M+1} \oint_A oldsymbol{u}_o \cdot oldsymbol{K} \cdot oldsymbol{n} \, dA$$

A = drop surface

16 Lanauze et al., 2015 Boundary Integral Method: Convert differential equations in the domain to integral equations along the boundary

Electric Field

$$oldsymbol{E}^{\infty}\cdotoldsymbol{n}+rac{1}{4\pi}\oint_{A}rac{oldsymbol{r}\cdotoldsymbol{n}}{r^{3}}\Delta E_{n}dA=rac{1}{2}(E_{n,o}+E_{n,i})$$

Jump in Normal Field

Interfacial Charge Transport

$$\frac{1}{S}E_{n,o} - E_{n,i} = \frac{1}{S}q \qquad \qquad \frac{1}{R}E_{n,i} - E_{n,o} = \frac{Re_E}{Ca_E}\frac{\partial q}{\partial t} + Re_E\nabla_s \cdot (uq)$$

Fluid Flow

$$\boldsymbol{u}_o = -\frac{1}{4\pi(M+1)} \oint_A \Delta \boldsymbol{f} \cdot \boldsymbol{J} \, dA + \frac{3}{2\pi} \frac{M-1}{M+1} \oint_A \boldsymbol{u}_o \cdot \boldsymbol{K} \cdot \boldsymbol{n} \, dA$$

$$Surfactant Transport$$

$$\frac{1}{Ca_{E}}\frac{\partial\Gamma}{\partial t} + \nabla_{s} \cdot (\boldsymbol{u}_{s}\Gamma) + (\boldsymbol{u}_{s} \cdot \hat{\boldsymbol{n}})\kappa\Gamma - \frac{1}{Pe_{s}}\nabla_{s}^{2}\Gamma = 0$$

Pure Squalane Drop

Lanauze et al., Soft Matter, 2018

Surfactant addition changes conductivity and interfacial tension

Marangoni stresses change breakup mode

Do electric fields affect surfactant transport?

Electrified micro-tensiometer to measure interfacial tension

Electrified micro-tensiometer to measure interfacial tension

Material 1

Surfactant: Polyisobutylene succinimide

OLOA 11000

Oil: Isopar-M (alkane mixture)

Material 2

Surfactant: Polydimethylsiloxane (PDMS) based rake surfactant

Oil: Isopar-M (alkane mixture)

The surfactants *do not dissociate* in oil

Electric field does not change interfacial tension of pure oil-water

Transport can be precisely controlled by scheduling the field

Electro-migration of charge carriers result in enhanced transport

$$E_{\infty}$$
 / $h \approx 1mm$

Time Scales

Diffusion time scale, $au_{d}=rac{h^{2}}{D}$ Electrophoretic time scale, $au_E=rac{h}{m\,qE_\infty}$

Dimensionless Group

Peclet No,
$$Pe_E=rac{qhE_\infty}{k_BT}\sim 50-5000$$

Stokes-Einstein: $D = mk_BT$ Alvarez et al., PRE, 2010 29

Sengupta et al., PRE 2019

Conclusions

• Unstable suspensions yield accelerated, non-homogeneous breakup

 Electro-migration of surfactant induced charge carriers result in *precisely controlled,* enhanced transport under electric fields

Acknowledgements

- NSF CBET-1066853, NSF CBET-1804548
- John E. Swearingen Fellowship, Carnegie Mellon University