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Applications of PDE Optimization

I Open-loop optimal control of distributed systems

I flow control problems in fluid mechanics (e.g., optimization of lift
and/or drag, mixing, etc.)

I structural optimization is solid mechanics

I process optimization in chemical engineering

I portfolio optimization in investing

I State and parameter estimation for distributed systems

I inverse problems for PDEs (e.g., medical imaging)

I data assimilation in Numerical Weather Prediction (“4D VAR”)
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Euler-Lagrange Equations
Reduced Objective Functional
Gradient Flows

General Framework

I Equation-constrained optimization problem

(?)

 inf
(x ,ϕ)
J̃ (x , ϕ)

subject to: S(x , ϕ) = 0

where:
I x ∈ X — the state variable (X is a suitable function space)

I ϕ ∈ U — the control variable (U is a suitable function (Hilbert) space)

I J̃ : X × U → R — the objective functional

I S : X × U → X ∗ — constraint (PDE with initial/boundary
conditions)
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I The constraint S(x , ϕ) = 0 be handled by introducing the Lagrange
multiplier λ ∈ X , such that we can define the Lagrangian

L(x , ϕ, λ) = J̃ (x , ϕ)− 〈λ,S(x , ϕ)〉X×X ∗

I The constrained minimizers are then defined by the variational
problem

sup
λ∈X

inf
(x ,ϕ)∈X×U

L(x , ϕ, λ)

I Stationary points (x̃ , ϕ̃, λ̃) of the Lagrangian are solutions of the
Euler-Lagrange equations

∇λL(x̃ , ϕ̃, λ̃) = 0

∇xL(x̃ , ϕ̃, λ̃) = 0

∇ϕL(x̃ , ϕ̃, λ̃) = 0

I The stationary points (x̃ , ϕ̃, λ̃) are saddle points. The problem is
hard so solve and we will advocate for a different formulation.
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I If the constraint equation S(x , ϕ) = 0 can be solved for x (cf. implicit
function theorem), then x = x(ϕ) and one can define the reduced
objective functional

J (ϕ) := J̃ (x(ϕ), ϕ)

I Constrained optimization problem (?) can then replaced with the
following equivalent unconstrained problem

min
ϕ∈U
J (ϕ)

I Inequality constraints are more difficult to handle, especially in the
context of PDE optimization, and will not be considered here
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I How to find a local minimizer ϕ̃?

I Consider the following initial-value problem in the space U , known as
the gradient flow

(GF)


dϕ(τ)

dτ
= −∇J̃ (ϕ(τ)), τ > 0,

ϕ(0) = ϕ0,

where
I τ is a “pseudo-time” (a parametrization)

I ϕ0 is a suitable initial guess

I Then, limτ→∞ ϕ(τ) = ϕ̃
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I When the optimization is nonconvex, “solution” mean a local
minimizer
I one is often interested in branches of local maximizers obtained as

some parameter is varied

I In principle, the gradient flow may converge to a saddle point ϕs ,
where ∇J̃ (ϕs) = 0 and the Hessian ∇2J̃ (ϕs) is not positive-definite,
but in actual computations this is very unlikely.
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I Optimize-then-Discretize: optimality conditions and gradient
expressions derived at the continuous (PDE) level and only then
discretized ⇐= will focus on this approach

I formulation independent of discretization

I allows one to exploit the analytic structure of the problem (e.g.,
regularity, etc.)

I works well with mesh refinement in the numerical solution of PDEs

I Discretize-then-Optimize: the PDE problem is discretized first and
then treated as optimization problem in finite dimension

I PDE discretization errors do not affect the optimization procedure

I can take advantage of Automatic Differentiation (AD) tools

I may be more suitable for very large problems
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