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Introduction

The classical Euler–Poisson–Darboux (EPD) equation is defined by

∂2u

∂t2
+
γ

t

∂u

∂t
=
∂2u

∂x2 , u = u(x , t), x ∈ R, t > 0, γ ∈ R. (1)

The operator acting by variable t in (1) is the Bessel operator

(Bγ)t =
∂2

∂t2
+
γ

t

∂

∂t
.

The equation (1) is considered as a model of random flights in
Orsingher E. A planar random motion governed by the
two-dimensional telegraph equation. J. Appl. Probab.
1986;23:385–397.
Orsingher E. Probability law, flow function, maximum
distribution of wave-governed random motions, and their
connections with Kirchhoff’s laws. Stochastic Process Appl.
1990;34:49–66.
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Introduction

The first contribution in this area goes back to Sydney Goldstein
Goldstein S. On diffusion by discontinuous movements and
thetelegraph equation. Quart. J. Mech. Appl. Math.
1951;4:129–156.

He considered the simplest random walk on the real line, in which a
particle placed at the origin at time 0 moves with two finite speeds
±λ changing its current speed in accordance with the simplest
Poisson process with a constant parameter µ. He discovered that
the distribution of position particles x during t is a solution to a
telegraph equation of the form

∂2u

∂t2
+ 2µ

∂u

∂t
= λ2 ∂

2u

∂x2 .
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Introduction

This model was then examined in detail by Mark Katz and Enzo
Orsinger

Katz M. A stochastic model related to the telegrapher’s
equation. Rocky Mountain J. Math. 1974;4:497–509.
Orsingher E. Hyperbolic equations arising in random models.
Stochastic Process Appl. 1985;21:93–106.
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Introduction

Natural generalizations to the case of the Poisson process with the
intensity function λ = λ(t) ∈ C 1(R) and to the multidimensional
case were examined in

De Gregorio A.& Orsingher E. Random flights connecting
porous medium and Euler-Poisson-Darboux equations. J.
Math. Phys. 2020;61(4):1–18.
Garra R. & Orsingher E. Random flights related to the
Euler-Poisson-Darboux equation. Markov processes and related
fields. 2016;22:87–110.
Iacus S. Statistical analysis of the inhomogeneous telegrapher’s
process. Statistics & Probability Letters. 2001;55:83–88.
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Introduction

Models of random walks with fractional derivatives were considered
in

Metzler R. & Klafter J. The random walk’s guide to
anomalous diffusion: A fractional dynamics approach. Physics
Report. 2000;339:1–77.
Gorenflo RR., Vivoli A. & Mainardi F. Discrete and continuous
random walk models for space-time fractional diffusion.
Nonlinear Dynamics. 2004;38:101–116.
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Introduction

In
De Gregorio A.& Orsingher E. Flying randomly in Rd with
Dirichlet displacements. Stoch. Process. Appl.
2012;122(2):676–713.

it was shown that the Euler–Poisson–Darboux equation of the form

∂2u

∂t2
+
γ

t

∂u

∂t
= λ2 ∂

2u

∂x2 , u = u(x , t), a > 0, t > 0, x ∈ R
(2)

defines the probabilistic law of random walk on R. The explicit
distribution u(x , t) of the position of arbitrarily moving particles is
obtained by solving the initial problems for the
Euler–Poisson–Darboux equation (2).



8/45

Random walks and fractional Euler-Poisson-Darboux equation
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In paper
Garra R. & Orsingher E. Random flights related to the
Euler-Poisson-Darboux equation. Markov processes and related
fields. 2016;22:87–110.

fractional diffusion-wave equation(︂
∂2u

∂t2
+
γ

t

∂u

∂t

)︂α
u = λ2 ∂

2u

∂x2 , (3)

u = u(x , t), x ∈ R, t > 0, 0 < α < 1

was obtained as a model of random walk.
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Introduction

Model (︂
∂2u

∂t2
+
γ

t

∂u

∂t

)︂α
u = λ2 ∂

2u

∂x2 ,

means that for α ∈ (0, 1/2) the particle moves on average more
slowly than when considering the model (2) which is corresponds to
α = 1/2. For α ∈ (1/2, 1) the particle moves faster on average.
In this talk using operational method we solve fractional
Euler–Poisson–Darboux equation of the form (3) with additional
conditions for 0 < α ≤ 1/2.
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Fractional Euler–Poisson–Darboux equation

A. N. Gerasimov in
Gerasimov AN. A generalization of linear laws of deformation
and its application to problems of internal friction. Akad.
Nauk SSSR, Prikl. Mat. Mekh. 1948;12:251–259

derived and solved fractional-order partial differential equation

∂2βu

∂t2β
= D

∂2u

∂x2 , u = u(x , t), x ∈ R, t > 0, 0 < β (4)

for viscoelasticity problems. The Cauchy problem for the equation
(4) was considered by F. Mainardi in

Mainardi F. The Fundamental Solutions for the Fractional
Diffusion-Wave Equation. Appl. Math. Lett. 1996;9(6):23–28.
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Fractional Euler–Poisson–Darboux equation

Also such kind of equations were considered by F. Mainardi and R.
Gorenflo in

Gorenflo R. & Mainardi F. Fractional calculus and stable
probability distributions. Arch. Mech. (Basel).
1998;50(3):377–388,

by I. Podlubny in
Podlubny I. Fractional Differential Equations. Academic Press:
San Diego; 1999,

by A. A. Kilbas, H. M. Srivastava, J. J. Trujillo in
Kilbas AA., Srivastava HM. & Trujillo JJ. Theory and
applications of fractional differential equations. Elsevier:
Amsterdam; 2006

and others.
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Fractional Euler–Poisson–Darboux equation

Let consider first the simplest one-dimensional case when
u = u(x , t), x ∈ R, t ≥ 0,

(ℬαγ,0+)tu(x , t) = λ2∂
2u

∂x2 , 0 ≤ α < 1/2, λ > 0, (5)

with the Cauchy condition

u(x , 0) = f (x). (6)
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Fractional Euler–Poisson–Darboux equation

Theorem

Let 0 < α ≤ 1/2, λ > 0 then the solution to the problem (5)–(6) is

u(x , t) =

∞∫
−∞

Gαγ (x − ξ, t)f (ξ)dξ, (7)

where
Gαγ (x , t) =

=
Γ
(︁
γ+1
2

)︁
λ
√
π21−γ t

−αH2,0
1,3

[︂
|x |

λ
t−α

⃒⃒⃒⃒ (︀
1− α

2 ,
α
2

)︀(︀
1− α−γ

2 , α2
)︀
, (0, 1), (α− γ,−α)

]︂
.

provided that the integral in the right-hand side of (7) is
convergent.
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Fractional Euler–Poisson–Darboux equation

For integers m, n, p, q such that 0 ≤ m ≤ q; 0 ≤ n ≤ p, ai , bj ∈ C
and for αi , βj ∈ R+ (i = 1, 2, ..., p; j = 1, 2, ..., q); the H–function
Hm,n
p,q (z) is defined via a Mellin–Barnes type integral in the form

Hm,n
p,q (z) = Hm,n

p,q

[︂
z

⃒⃒⃒⃒
(ai , αi )1,p
(bj , βj)1,q

]︂
=

1
2πi

∫
ℒ

ℋm,n
p,q (s)z

−sds, (8)

where

ℋm,n
p,q (s) =

m∏
j=1
Γ(bj + βjs)

n∏
i=1
Γ(1− ai − αi s)

p∏
i=n+1

Γ(ai + αi s)
q∏

j=m+1
Γ(1− bj − βjs)

.
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Fractional Euler–Poisson–Darboux equation

Let

a* =
n∑

i=1

αi −

p∑
i=n+1

αi +

m∑
j=1

βj −

q∑
j=m+1

βj ,

∆ =

q∑
j=1

βj −

p∑
i=1

αi ,

µ =

q∑
j=1

bj −

p∑
i=1

ai +
p − q

2
.

Then the H-function Hm,n
p,q (z) makes sense in the following case:

∆ > 0, z ̸= 0, ℒ = ℒ−∞ is a left loop situated in a horizontal strip
starting at the point −∞+ iϕ1 and terminating at the point
−∞+ iϕ2 with −∞ < ϕ1 < ϕ2 < +∞.
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Fractional Euler–Poisson–Darboux equation

In
Kilbas AA., Srivastava HM. & Trujillo JJ. Theory and
applications of fractional differential equations. Elsevier:
Amsterdam; 2006

the solution to the Cauchy problem

( CD2α
0+u)(x , t) = λ

2∂
2u

∂x2 , x ∈ R, t > 0, λ > 0, (9)

u(x , 0) = f (x), 0 < α ≤ 1/2 (10)

was given in the form

u(x , t) =

∞∫
−∞

Gα(x − ξ, t)f (ξ)dξ. (11)
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Fractional Euler–Poisson–Darboux equation

In (11)

Gα(x , t) =
1
2λ

t−αϕ

(︂
−α, 1− α; −

|x |

λ
t−α
)︂
. (12)

Let z , ρ, β ∈ C. Function ϕ(ρ, β; z) is defined by the series

ϕ(ρ, β; z) =
∞∑
k=0

1
Γ(ρk + β)

zk

k!
. (13)

If ρ > −1, the series in (13) is absolutely convergent for all z ∈ C,
while for ρ = −1 this series is absolutely convergent for |z | < 1 and
for |z | = 1 and Reβ > −1. Moreover, for ρ > −1, ϕ(ρ, β; z) is an
entire function of z .
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Fractional Euler–Poisson–Darboux equation

When γ = 0 instead of (5)–(6) we obtain (9)–(10) and (7) for
γ = 0 is

u(x , t) =

∞∫
−∞

Gα0 (x − ξ, t)f (ξ)dξ,

where

Gα0 (x , t) =
Γ
(︀1

2

)︀
λ
√
π2

t−αH2,0
1,3

[︂
|x |

λ
t−α

⃒⃒⃒⃒ (︀
1− α

2 ,
α
2

)︀(︀
1− α

2 ,
α
2

)︀
, (0, 1), (α,−α)

]︂
=

=
1
2λ

t−αH1,0
0,2

[︂
|x |

λ
t−α

⃒⃒⃒⃒
−

(0, 1), (α,−α)

]︂
which coincides with (12). Here we applied the next connection
between ϕ(ρ, β; z) and Hm,n

p,q (z)

ϕ(ρ, β; z) = H1,0
0,2

[︂
−z

⃒⃒⃒⃒
−

(0, 1), (1− β, ρ)

]︂
. (14)
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Another model of random walks. Short history

Let us start from a very short historical overview. Since the
founding of the “Educational Times”, in 1847, under the heading,
and then in a separate edition of “Mathematical Questions”, a large
number of problems have been associated with probability and
particularly with random walks. In 1865, M. W. Crofton

1 Crofton, M. W. "Question 1773," Mathematical Questions with
Their Solutions from the Educational Times, Vol. 4 (July-Dec.
1865), publ. 1866, 71-72.

posed the problem of a traveler’s movements along a river, which is
formalized as a random walk in a straight line. Probably, it was the
first mathematical illustration of the random flight concept.
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Another model of random walks. Short history

Later, in a letter to Nature in 1905 [1] Karl Pearson suggested to
find the probability that a man will be at the distance between r
and r + dr from the origin O after n displacements if he started to
move from a point O and walks one yard in a straight line then he
turns through any angle whatever and walks another yard in a
second straight line ets. This random walk problem has attracted
the interest of many researchers. In particular Lord Rayleigh
answered that he solved the problem of random walk in the context
of sound waves spreading in 1880 [2].

1 Pearson K.A., The problem of the random walk, Nature, July 27,
1905, 294.

2 Rayleigh (J. W. STRUTT), Baron "On the restdtant of a large
number of vibrations of the same pitch and of arbitrary phase," The
London, Edinburgh, and Dublin Philosophical Magazine, Set. 5,
Vol. 10 (1880), 73-78.
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Another model of random walks. Short history

Based on Lord Rayleigh’s conceptions Jan Cornelis Kluyver in 1905
[1] proposed the general solution of the random walk problem in
the terms of certain definite integrals, involving Bessel functions.
Karl Pearson with his assistant in 1906 wrote a detailed study of
migration [2] using the Kluyver approach. In the article [2] we can
see how difficult it was to study the proposed model containing
integrals of Bessel functions without using computer systems and
having a limited mathematical apparatus of special functions. The
authors used graphical methods and calculated the characteristics
of interest to them approximately manually using power series.

1 Kluyver J. C. "A local probability problem," Proceedings of the
SectiOn of Sciences, Koninklijke Akademie van Wetenschappen te
Amsterdam, Vol. 8 (1905), 341-350.

2 Pearson K.A., Bakeman John. Mathematical theory of random
migration. London: Dulau and Co., 1906. 54 p., VI pl.
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Another model of random walks. Short history

In all of these papers, it was a question of walks on the plane.
Watson [1], p.460-462 obtained a generalization of the random walk
model to the case of an arbitrary number of space dimensions.

1 Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd
ed., Cambridge, 1952.

A more detailed historical overview is given in the papers
1 Dutka, J. On the problem of random flights. Arch. Hist. Exact Sci.

32, 351–375 (1985).

2 Chandrasekhar S. Stochastic problems in physics and astronomy.
Rev. Mod. Phys. 15:1-89. 1943.
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Applications

Random walk introduced by Pearson (Pearson walks) has a large
number of applications. The British theoretical physicist Lord
Rayleigh studied the problem of the theory of sound, which is
mathematically equivalent to the problem of a random walk [1]. He
considered a set of oscillations, each with a unit amplitude, the
same frequency and an arbitrary phase, and posed the problem of
finding the distribution of the resulting intensity. Nobel laureate
Ronald Ross [2] presented a diffusion model of the random
migration of mosquitoes when he studied the laws of the spread of
malaria.

1 Rayleigh (J. W. STRUTT), Baron "On the restdtant of a large
number of vibrations of the same pitch and of arbitrary phase," The
London, Edinburgh, and Dublin Philosophical Magazine, Set. 5,
Vol. 10 (1880), 73-78.

2 Ross Ronald. On the logical basis of the sanitary policy of mosquito
reduction // Proceedings of the Congress of Arts and Sciences,
USA, St Louis. 1904. V. 6. P. 89.
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Applications

Pearson’s paper [1] introduced the application of random walks to
the description of migration models. Another interesting application
where a special case of the random walk model appeared is a
description of polymer conflguratlons [2], p. 142, formula 4.28b.

1 Pearson K.A., Bakeman John. Mathematical theory of random
migration. London: Dulau and Co., 1906. 54 p., VI pl.

2 M. V. Volkenstein The Configurational Statistics of Polymeric
Chains. USSR Academy of Sciences. 1959. 466 p.
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Applications

As the next application of Pearson random walks is in the analysis
of narrowband signals in noise [1]. Next remarkable application is
motion of microorganisms on surfaces [2,3]. Also such model
appeared in crystallography [4].

1 R. Barakat, J. E. Cole III, Statistical properties of n random
sinusoidal waves in additive Gaussian noise. Journal of Sound and
Vibration (1979) 62(3), 365-377

2 H. C. Berg, D. A. Brown Chemotaxis in Escherichia coli analysed by
Three-dimensional Tracking, Nature. 239, pages 500–504 (1972).

3 R. M. Macnab, D. E. Koshland Jr. The gradient-sensing mechanism
in bacterial chemotaxis. Proc Natl Acad Sci USA. 1972
Sep;69(9):2509-12.

4 R. Srinivisan, S. Parthasarathy, Some Statistical Applications in
X-ray Crystallography (Pergamon Press, London, 1976).
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Novelity

Historical and modern works on this topic mainly concern the
discrete case of a random walk, in particular, for example, when a
walk occurs along a lattice oriented parallel to the rectangular
coordinate axes of a k-dimensional Euclidean space. Relatively little
attention has been paid to the continuous case of a random walk,
in which the direction of a wandering object can change
continuously from one step to the next. Why is this happening?
The fundamental difference between the mathematical model of a
random walk with an arbitrary, continuously changing angle of
direction of a moving object from a walk on a grid is to use a
generalized translation instead of the usual one.
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Novelity

The generalized translation is a singular integral operator, and the
corresponding differential equations contain the Bessel operator
instead of the usual derivative. Therefore, the reason that the
model proposed by Rayleigh and Pearson did not receive rich
theoretical development was the lack of a suitable mathematical
apparatus aimed at working with a generalized translation. Here,
we present a mathematical description of a continuous random walk
model, in which the direction of a wandering object can
continuously change from one step to another, and show that it is
supported by experimental data.
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Quantitative model of random walks

Let agents A = {a1, ..., as } are concentrated at the origin. So at the
time t0 agent ai , i = 1, s have position X0. Then it starts to jumps
from the center and at times t1, t2,...,tn it has displacements X1,

X2,...,Xn. The resultant at tn is Sn = X0 +
n∑

m=1
Xm. The

displacements are assumed to be independent and the probability
density of Xm is pm(Xm) and the probability density of Sn is
required to be found. We start from finding of the probability
Pr(|Sn| ≤ r) that Sn lies inside or on a circle of radius r .
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Quantitative model of random walks

Theorem
Let lm denotes the length of the m–th jump, m = 1, ..., n. Let
Pr(|Sn| ≤ r) = Pr(|Sn| ≤ r ; l1, l2, ..., ln) is the probability that Sn
lies inside or on a circle of radius r centred at origin O. Then the
next formula for Pr(|Sn| ≤ r) is valid

Pr(|Sn| ≤ r) = χ(r)
21−ν2 r

ν
2

Γ
(︀
ν
2

)︀ ∞∫
0

Jν
2
(rt)

n∏
m=1

jν
2 −1(lmt)t

ν
2 −1dt, (15)

where Jη is a Bessel function of the first kind,
jη(x) =

2ηΓ(η+1)
xη Jη(x) is a normalize Bessel function,

χ(r) =

{
1 if r ̸= |Sn|;
1
2 if r = |Sn|.
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Quantitative model of random walks

Proof. In this problem we suppose that all values of θm, m = 1, n
are not equally likely and depend on parameter ν > 1. It expresses
in that the element of angle θm multiplied by the factor sinν−2 θm
and θm varies from 0 to π. Taking into account the formula

π∫
0

sinν−2 tdt =

√
πΓ
(︀
ν−1

2

)︀
Γ
(︀
ν
2

)︀
we get that the probability that an agent will be in a circle of
radius r after the n-th jump for n ≥ 2 is the (n − 1)-tuple integral
of the form

Pr(|Sn| ≤ r) =

(︃
Γ
(︀
ν
2

)︀
√
πΓ
(︀
ν−1

2

)︀)︃n−1

×

×
π∫
0

sinν−2 θ1dθ1

π∫
0

sinν−2 θ2dθ2...

π∫
0

sinν−2 θn−2dθn−2

∫
sinν−2 θn−1 dθn−1.

(16)
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Quantitative model of random walks

Proof.
In (16) the integration with respect to θn−1 extends over the values
of θn−1 which make |Sn| ≤ r . Formula (16) generalizes the formula
from [1], p.461 where is ν = p ≥ 2 only natural numbers.
When using the Weber–Schafheitlin formula from [1] for ν > 0 of
the form

∞∫
0

Jν−1(st)Jν(rt)dt =


sν−1

rν for 0 < s < r ;
1
2r for s = r ;
0 for s > r .

(17)

1 Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd
ed., Cambridge, 1952.
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Quantitative model of random walks

Proof. So, if discontinuous factor

χ(r)
r
ν
2

|Sn|
ν
2 −1

∞∫
0

Jν
2 −1(|Sn|t)Jν2 (rt)dt =

{
1 for |Sn| ≤ r ;
0 for |Sn| > r ,

(18)

where

χ(r) =

{
1 if r ̸= |Sn|;
1
2 if r = |Sn|

is inserted in the (n − 1)-tuple integral Pr(|Sn| ≤ r), the range of
values of θm may be taken to be from 0 to π.
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Quantitative model of random walks

Proof. We obtain

Pr(|Sn| ≤ r) = χ(r)r
ν
2

(︃
Γ
(︀
ν
2

)︀
√
πΓ
(︀
ν−1

2

)︀)︃n−1

×

×
π∫
0

sinν−2 θ1dθ1

π∫
0

sinν−2 θ2dθ2...

π∫
0

sinν−2 θn−2dθn−2×

×
π∫
0

sinν−2 θn−1|Sn|
1−ν

2 dθn−1

∞∫
0

Jν
2 −1(|Sn|t)Jν

2
(rt)dt =

= χ(r)r
ν
2

(︃
Γ
(︀
ν
2

)︀
√
πΓ
(︀
ν−1

2

)︀)︃n−1 π∫
0

sinν−2 θ1dθ1

π∫
0

sinν−2 θ2dθ2 × ...

...×
π∫
0

sinν−2 θn−2dθn−2

∞∫
0

Jν
2
(rt)dt

π∫
0

Jν
2 −1(|Sn|t)

|Sn|
ν
2 −1 sinν−2 θn−1 dθn−1.
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Quantitative model of random walks

Proof. Using the definition of normalized Bessel function of the
first kind jν

jη(x) =
2ηΓ(η+ 1)

xη
Jη(x), (19)

we can write

Pr(|Sn| ≤ r) = χ(r)21−ν2 r
ν
2

Γn−2 (︀ν
2

)︀(︀√
πΓ
(︀
ν−1
2

)︀)︀n−1×

×
π∫
0

sinν−2 θ1dθ1

π∫
0

sinν−2 θ2dθ2...

π∫
0

sinν−2 θn−2dθn−2×

×
∞∫
0

Jν
2
(rt)t

ν
2 −1dt

π∫
0

jν
2 −1(|Sn|t) sin

ν−2 θn−1 dθn−1.
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Quantitative model of random walks

Proof.

Figure 1: Migration scheme on the n-th jump.
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Quantitative model of random walks

Proof. Since (see Figure 1)

|Sn| =
√︀
|Sn−1|2 − 2|Sn−1|ln cos θn−1 + l2n

and for integral by θn−1 we obtain
π∫
0

jν
2 −1(|Sn|t) sin

ν−2 θn−1 dθn−1 =

π∫
0

jν
2 −1(

√︀
|Sn−1|2 − 2|Sn−1|ln cos θn−1 + l2n · t) sinν−2 θn−1 dθn−1 =

=

√
πΓ
(︀
ν−1

2

)︀
Γ
(︀
ν
2

)︀ ν−1T
|Sn−1|
ln

jν
2 −1(lnt)

where ( γT y
x f )(x) is generalized translation of the form

( γT y
x f )(x)=

Γ
(︀
γ+1

2

)︀
√
πΓ
(︀
γ
2

)︀ π∫
0

f (
√︀

x2 + y2 − 2xy cos θ) sinγ−1 θ dθ, γ > 0.
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Quantitative model of random walks

Proof. The formula

γT y
x jγ−1

2
(xξ) = jγ−1

2
(xξ) jγ−1

2
(yξ)

is known (see [1]). Therefore,

π∫
0

jν
2 −1(

√︁
|Sn−1|2 − 2|Sn−1|ln cos θn−1 + l2n · t) sinν−2 θn−1 dθn−1 =

=

√
πΓ
(︀
ν−1
2

)︀
Γ
(︀
ν
2

)︀ jν
2 −1(lnt)jν2 −1(|Sn−1|t).

1 Levitan, B.M., 1951. Expansion in Fourier Series and Integrals with
Bessel Functions. Uspekhi Mat. Nauk, 6, 2 (42), 102–143.
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Quantitative model of random walks

Proof. So we obtain
Pr(|Sn| ≤ r) =

= χ(r)21−ν
2 r

ν
2

Γn−2
(︀
ν
2

)︀(︀√
πΓ
(︀
ν−1

2

)︀)︀n−1

√
πΓ
(︀
ν−1

2

)︀
Γ
(︀
ν
2

)︀ π∫
0

sinν−2 θ1dθ1

π∫
0

sinν−2 θ2dθ2×...

...×
π∫
0

sinν−2 θn−2dθn−2

∞∫
0

Jν
2
(rt)jν

2 −1(lnt)jν2 −1(|Sn−1|t)t
ν
2 −1dt.
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Quantitative model of random walks

And
Pr(|Sn| ≤ r) =

= χ(r)21−ν
2 r

ν
2

Γn−3
(︀
ν
2

)︀(︀√
πΓ
(︀
ν−1

2

)︀)︀n−2

π∫
0

sinν−2 θ1dθ1

π∫
0

sinν−2 θ2dθ2 × ...

...×
π∫
0

sinν−2 θn−2dθn−2

∞∫
0

Jν
2
(rt)jν

2 −1(lnt)jν2 −1(|Sn−1|t)t
ν
2 −1dt.

By repetitions of this process we get (15):

Pr(|Sn| ≤ r) = χ(r)
21−ν

2 r
ν
2

Γ
(︀
ν
2

)︀ ∞∫
0

Jν
2
(rt)

n∏
m=1

jν
2 −1(lmt)t

ν
2 −1dt.

What was required to prove.
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Quantitative model of random walks

Since
d

dr
r
ν
2 Jν

2
(rt) = tr

ν
2 Jν

2 −1(rt)

on differentiating Pr(|Sn| ≤ r) with respect to r , one gets the
probability density

fn(r) = χ(r)
21−ν2 r

ν
2

Γ
(︀
ν
2

)︀ ∞∫
0

Jν
2 −1(rt)

n∏
m=1

jν
2 −1(lmt)t

ν
2 dt. (20)
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Quantitative model of random walks

Since We can calculate the integral in (20) using formula 2.12.44.5
from [1], p. 207. We get

fn(r) = χ(r)
2r

ν
2 −2

Γ
(︀
ν
2

)︀ F (n)
C

⎛⎜⎝ν2 , 1; ν2 , ..., ν2︸ ︷︷ ︸
n

;
l21
r2 , ...,

l2n
r2

⎞⎟⎠ .

F
(n)
C (a, b; c1, ..., cn; z1, ..., zn) =

∞∑
k1,...,kn=0

(a)k1+...+kn(b)k1+...+kn

(c1)k1 ...(cn)kn

zk1
1 ...z

kn
n

k1!...kn!
,

is the Lauricella function, (z)n = z(z + 1)...(z + n − 1),
n = 1, 2, ..., (z)0 ≡ 1 is the Pochhammer symbol.

1 Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I., 1990. Integrals
and Series, Vol. 2, Special Functions. Gordon & Breach Sci. Publ.,
New York.
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Quantitative model of random walks

If l1 = l2 = ... = ln = l then

Pr(|Sn| ≤ r) = χ(r)
21−ν2 r

ν
2

Γ
(︀
ν
2

)︀ ∞∫
0

Jν
2
(rt) jnν

2 −1(lt)t
ν
2 −1dt. (21)

Putting l = vl1 we get

Pr(|Sn| ≤ r) = χ(r)
21−ν2 r

ν
2

Γ
(︀
ν
2

)︀ ∞∫
0

Jν
2
(rt) jnν

2 −1(vl1t)t
ν
2 −1dt = {vt = τ} =

=
1
v
χ(r)

21−ν2 r
ν
2

Γ
(︀
ν
2

)︀ ∞∫
0

Jν
2

(︁
r
τ

v

)︁
jnν
2 −1(l1τ)t

ν
2 −1dτ. (22)
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Special cases of quantitative model

Here we compare the resulting in previous subsection model with
previously known models.

1 If ν = 2 and l1 = l2 = ... = ln = l then we get
Person–Raylleigh model

Pr(|Sn| ≤ r) = χ(r)r

∞∫
0

J1(rt)J
n
0 (lt)dt,

fn(r) = χ(r)r

∞∫
0

tJ0(rt)J
n
0 (lt)dt.
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Special cases of quantitative model

1 For ν = 2 we obtain Kluyver model for the case when agents
moving by plain and the choice of the angle θm between −π
and π are equally probable. In this model the probability that
the distance from the starting point will be less or equal than r
after n flights is,

Pr(|Sn| ≤ r) = χ(r)r

∞∫
0

J1(rt)
n∏

m=1

J0(lmt)dt.

and the probability density is

fn(r) = χ(r)r

∞∫
0

tJ0(rt)
n∏

m=1

J0(lmt)dt.

Here we notice that j0(x) = J0(x).
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Special cases of quantitative model

1 For ν = k ∈ N, k ≥ 3 in (15) we obtain Watson model This
case corresponds to the problem for space of k dimensions. If
generalised polar coordinates (in which θm is regarded as a
co-latitude) are used, the element of generalised solid angle
contains θm only by the factor sinp−2 θmdθm and θm varies
from 0 to π. The symmetry with respect to the polar axis
enables us to disregard the factor depending on the longitudes.
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THANK YOU FOR ATTENTION.


