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Evolution to multicellularity

Unicellular Organism

Unconstrained proliferation

Lack of cooperation

Plasticity

Evolution
to multicellularity

Differentiation

Regulations of capabilities Tumor suppressors
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Atavistic model of cancer

Damaged tumor suppressors

Reappearance of latent genes related to unicellular functions

Unconstrained proliferation

Lack of cooperation

Plasticity

Hallmark
capabilities
of cancer

([3] Davies and Lineweaver, 2011 )
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Bet Hedging

Understanding cancer is closely related to understanding the emergence of
multicellularity.

It is reasonable to assume that both primitive organism and the plastic
tumour cells adopted bet hedging strategies.

Bet Hedging

Common risk-diversifying strategies in unpredictably changing and often
aggressive environments, in order to maximise their phenotypic fitness.
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Phenotypes

Variables

x viability (potential to resist deadly insults)

y fecundity (potential to proliferate)

θ plasticity (potential to continue to differentiate)

(x , y) ∈ Ω := {(x , y) ∈ [0, 1]2 : C (x , y) ⩽ K}, θ ∈ [0, 1]

Notations

z = (x , y , θ) ∈ D := Ω × [0, 1]
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The equation

The problem

∂tn + ∇ ·
(
Vn − A(θ)∇n

)
= (r(z) − d(z)ρ(t))n, (1)(

Vn − A(θ)∇n
)
· n = 0, for all z ∈ ∂D, (2)

n(0, z) =n0(z), for all z ∈ D. (3)

Population size

ρ(t) :=

∫
D

n(t, z)dz .

(Inspired by [1] and [2], Bouin, Calvez et al.)
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The equation

r(z), d(z) growth and death rate.

A(θ) diffusion matrix, gives the speed at which non-genetic
epimutations occur.

V (t, z) represents the sensitivity of the population to abrupt changes
on the environment.
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Questions

What is the effect of considering plasticity as a trait?

How does the environment affect the population?
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Finite Volume Method

Presence of a drift term,

Presence of integral terms,

Finite Volume Method
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Finite Volume Method

Presence of a drift term,

Presence of integral terms,

Finite Volume Method
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Variational solution

Functional space

n := n(t) ∈ XT := C ([0,T ],H) ∩ L2((0,T ),V) ∩ H1([0,T ],V ′)

Operator Q[n]

⟨Q[n], φ⟩ =

∫
D

(
− A∇n∇φ + Vn∇φ + (r(z) − ρd(z))nφ

)
dz

Weak formulation

(n(t), φ(t))H =(n0, φ(0))H +

∫ t

0

(
⟨Q[n](s), φ(s)⟩ + ⟨φ′(s), n(s)⟩

)
ds (4)
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Existence and uniqueness

Theorem

For all positive n0 ∈ Lp(D), p > 2, there exists a unique global positive
weak solution for problem (1)-(3) in the sense of (4).
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The mesh

Mesh for [0, 1]3

Cijk =

[
i

M
,
i + 1

M

]
×
[
j

M
,
j + 1

M

]
×
[
k

M
,
k + 1

M

]
, h = 1/M

Mesh covering D

M = {Cijk : Cijk ∩ D ̸= ∅}

Dh =
⋃
M

Cijk
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Approximated problem

Problem over Dh

∂t ñh + ∇ ·
(
V ñh − A(θ)∇ñh

)
= (r(z) − d(z)ρ̃h(t))ñh, in Dh (5)(

V ñh − A(θ)∇ñh

)
· n = 0, for all z ∈ ∂Dh, (6)

ñh(0, z) =n0(z), for all z ∈ Dh, (7)

Local average

νj(t) :=
1

h3

∫
Dj

ñh(t, z)dz = n(t, zj) + O(h2).
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Semi-discrete scheme

Semi-Discrete scheme

d

dt
νj(t) = Mj(t, ρ̃h(t))νj(t) +

∑
l∈Nj

Bjl(t)νl(t), (8)

where

Mj(t, ρ̃h(t)) = −
∑
l∈Nj

|Γjl |
h3

(
u+jl (t) +

Ajl

djl

)
+
(
rj − dj ρ̃h(t)

)
,

Bjl =
|Γjl |
h3

(
− u−jl (t) +

Ajl

djl

)
.
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Discrete Scheme

Implicit discrete scheme

νk+1
j − νkj

∆t
= Mk+1

j νk+1
j +

∑
l∈Nj

Bk+1
jl νk+1

l ,

where

Mk+1
j := Mj(tk+1) = −

|Γjl |
h3

∑
l∈Nj

(
u+jl (tk+1) +

Ajl

djl

)
+
(
rj − dj

∑
l

h3νk+1
l

)
,

Bk+1
jl := Bjl(tk+1) =

|Γjl |
h3

(
− u−jl (tk+1) +

Ajl

djl

)
.
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Convergence of the semi-discrete scheme

Theorem

For all positive n0 ∈ Lp(D), p > 2, there exists a unique positive solution
for problem (8). Furthermore, the function ñh(t, z) defined by

ñh(t, z) =
∑
j

νj(t)1Dj∩D ,

converges in L2(DT ) to the unique positive weak solution of (1)-(3) as h
goes to zero.
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Convergence of the discrete scheme

Theorem

Let ν0j be nonnegative initial data with mass ρ0 =
∑
j
h3ν0j and assume

that

∆t <
1(√

r+ + d+ρ +
√
d+ρ

)2
,

then there exist a unique nonnegative solution νkj , k = 1, . . . ,N to scheme
(19). Furthermore, for each h, the sequences of piecewise constant
functions

ν j∆t(t) =
K∑

k=0

νkj 1(tk ,tk+1),

strongly converges to the solution of (8) in (L2((0,T )))N .
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Order of convergence for the semi-discrete scheme

Figure: The discrete L2(DT ) error for the semi-discrete scheme, for T = 10 and
M ranging between 2 and 128.
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Order of convergence for the discrete scheme

Figure: The discrete L2(DT ) error for the discrete scheme, for T = 10 and M1

ranging between 2 and 256.
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Simulations

Monomorphic population

r(x , y) = e−(x−0.1)2−(y−0.1)2

d = 0.5

Mass of n0 concentrated on a ball of around (0.25, 0.25)

Diffusion parameters: 10−6

No drift
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Simulations

Simultaneous emergence of dimorphism

r(x , y) = 1(y<x)e
−(x−0.1)2−(y−0.9)2 + 1(x<y)e

−(x−0.9)2−(y−0.1)2

d = 0.5

n0 = 2/3

Diffusion parameters: 10−6

No drift

As shown in ([4], Lorenzi et Pouchol, 2020).
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Simulations

Dimorphism due to environment

r(x , y) = e−(x−0.1)2−(y−0.1)2

d = 0.5

Mass of n0 concentrated on a ball of around (0.25, 0.25)

Diffusion parameters: 10−6

V (t, x , y) = 10−3(1(y>x)(−1, 1) + 1(y<x)(1,−1))
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Simulations

Effects of plasticity

r(x , y , θ) = e−(x−0.1)2−(y−0.1)2 + 10θ

d = 0.5

Mass of n0 concentrated around (0.25, 0.25, 0.25) and
(0.25, 0.25, 0.75)

Diffusion matrix:

A(θ) = 10−6

θ + 1 0 0
0 θ + 1 0
0 0 1


V (t, x , y , θ) = 10−3θ(1(y>x)(−1, 1) + 1(y<x)(1,−1))
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Simulations

Divergence into dimorphism

r(x , y) = 1(y<x)e
−(x−0.1)2−(y−0.9)2 + 1(x<y)e

−(x−0.9)2−(y−0.1)2

d = 0.5

Mass of n0 concentrated on a ball around (0.25, 0.25, 0.5)

Diffusion matrix:

A(θ) = 10−6

θ + 1 0 0
0 θ + 1 0
0 0 1


V (t, x , y , θ) = 10−3θ(1(y>x)(−1, 1) + 1(y<x)(1,−1))

V (t, x , y , θ) = 10−3θ(−y ,−x ,−x2 − y2)
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Conclusions

Summary

A structured population model including the effects of natural
selection, non-genetic epimutations and abrupt changes on the
environment was constructed.

Two numerical schemes were constructed using the Finite Volume
Method in order to prove the existence and uniqueness of solution for
such model, and approximate such solution.

The order of convergence was numerically approximated by
comparing with an exact solution

The behavior of the population was studied by means of different
simulations.
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Conclusions

Concluding remarks

We observed the emergence of dimorphism under different conditions
and evolving in different ways:

1 Emerging simultaneously starting from an homogeneous starting
population,

2 Diverging from a single concentration point towards the maximum of
the fitness function.

3 Diverging from a single concentration point as a response to the
changes on the environment.

We also observed some of the effect of considering plasticity as a
trait: more adaptable individuals could have more chances of
surviving to abrupt changes on the environment.

Frank Alvarez, José Antonio Carrillo, Jean Clairambault Structured Population



Emeric Bouin and Vincent Calvez.
Travelling waves for the cane toads equation with bounded traits.
20 pages, September 2013.

Emeric Bouin, Vincent Calvez, Nicolas Meunier, Sepideh Mirrahimi,
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Thank you!

Merci!

¡Gracias!
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