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We are interested in studying the following fluid dynamic problem

1x

y

y = η(x, t)

0

φ(x, y, t)

F (t)

Here fluid is inviscid, irrotational and motion is confined to
two-dimensions.

η(x , t) is the unknown free-surface, to be found as part of the
analysis.

F (t) is either an imposed external forcing (given), or a coupled
forcing (calculated via additional equation).
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In anticipation of using conformal mappings we extend the domain
from x ∈ [0, 1] to x ∈ [0, 2] by forming the even extension about
x = 1.

This gives a periodic domain with period 2 in our notation.

Mass conservation gives

∆φ := φxx + φyy = 0 , 0 < y < η(x , t) , 0 < x < 1 .

Kinematic (free-surface particles remain on the free-surface)
free-surface condition is

ηt + φxηx = φy at y = η(x , t) 0 ≤ x ≤ 1 .
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While the dynamic (continuity of pressure) free-surface condition
is:

φt +
1
2 (φ

2
x + φ2y ) + g(η − h0) + xF̈ = 0 ,

on y = η(x , t) 0 ≤ x ≤ 1

φt +
1
2(φ

2
x + φ2y ) + g(η − h0) + (2− x)F̈ = 0 ,

on y = η(x , t) 1 ≤ x ≤ 2

The boundary conditions at the vessel walls are

φy = 0 at y = 0 and φx = 0 at x = 0, 1, 2 .

Additional equation for F (t) if required.
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To generate fully nonlinear numerical solutions of these equations
is difficult due to the unknown position of the free-surface η(x , t).

Numerical schemes are easier to implement on fixed domains.

Thus we wish to introduce a mapping such that:

A

B C

D

x = 2x = 0

y = 0

y = η(x, t)

A′

B′ C ′

D′

µ = 2µ = 0

ν = 0

ν = −Q(t)

where Q(t) is the conformal modulus which is not known a priori.
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Therefore the physical Cartesian coordinates transform to

(µ, ν, t) 7→ (x(µ, ν, t), y(µ, ν, t)) .

As the mapping is conformal

xµ = yν and xν = −yµ,

then both x and y satisfy Laplace’s equation

xµµ + xνν = 0, yµµ + yνν = 0.

On the free-surface

(X (µ, t),Y (µ, t)) = (x(µ, 0, t), y(µ, 0, t)) for µ = [0, 2].

gives parametric representation of free-surface.
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Writing the free-surface equations in parametric form in the
rectangular computational domain are

XµYt − YµXt = −Ψµ , at ν = 0 .

and

JΦt − (YµYt + XµXt)Φµ +
1

2

(
Φ2
µ −Ψ2

µ

)
+ gJ(Y − h0) + XF̈ = 0 ,

at ν = 0 ,

where J = X 2
µ + Y 2

µ .

The bottom boundary condition reduces to

ψµ = 0 on ν = −Q(t).

Ultimately, we hope to time-integrate these equations to find X , Y
and Φ, but these two equations are implicit for the time derivative
terms, hence are difficult to time integrate using Runge-Kutta, say.
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But we note that for the parameterised curve (X (µ, t),Y (µ, t)),
any curve can be written as the linear combination of its tangent
vector (Xµ,Yµ) and its normal vector (−Yµ,Xµ), so

Xt = −
β

J
Yµ +

α

J
Xµ

Yt =
β

J
Xµ +

α

J
Yµ ,

where β = −Ψµ from the kinematic condition. Here α,
representing the tangential fluid velocity, is unknown at this stage
but is fixed by forcing the transformation to be analytic.
Also the dynamic condition becomes

Φt = −g(Y − δ) −
1

2J
Φ2
µ +

1

2J
Ψ2

µ +
α

J
Φµ.

Note: There is no PDE for Ψ hence we cannot directly time
integrate these equations, we also have the problem of determining
the form of α. However we do have the two complex functions

z = x + iy w = φ+ iψ.



Fluid Problem and Governing Equations General conjugate function theory Return to Fluid Problem Sloshing with Baffles Dynamic

Outline

1 Fluid Problem and Governing Equations

2 General conjugate function theory

3 Return to Fluid Problem

4 Sloshing with Baffles

5 Dynamic Problem



Fluid Problem and Governing Equations General conjugate function theory Return to Fluid Problem Sloshing with Baffles Dynamic

Consider a general analytical function u(µ, ν) + iv(µ, ν) in the
periodic half space µ ∈ [0, 2], ν ∈ [−∞, 0] (i.e. infinite depth
fluid). Using the mapping

ξ = exp(−iπ(µ + iν)),

maps this domain to the inside of the unit circle.

Via Cauchy’s integral theorem we have

u(ξ) + iv(ξ) = −
1

2πi

∮ 2π

0

U(θ) + iV (θ)

θ − ξ
dθ,

where U(µ) + iV (µ) = u(µ, 0) + iv(µ, 0).
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When evaluated on the edge of the disk, and using the above
transformation leads to

U(µ) + iV (µ) =
1

2

∫ 2

0
(U(s) + iV (s))

[
1− i cot

(π
2
(µ− s)

)]
ds.

or
(I+ iK)(U + iV ) = U + iV .

Here

K(U)(µ) :=
1

2

∫ 2

0
U(s) cot

(π
2
(µ − s)

)
ds ,

is the Hilbert transform and

(·) =
1

2

∫ 2

0
(·) dµ.

Taking real and imaginary parts shows how these quantities are
linked on the free-surface

V = V −K(U) and U = U +K(V ) .

Given V we then know U and vice versa.
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In finite depth the bottom and surface conjugate functions are
related (using the same procedure) by the Hilbert-Garrick
transformation
[
I+ i

(
K+ Rq

)
−iSq

+iSq I− i
(
K+ Rq

)
](

U + iV

Ub + iVb

)
=

(
U + iV

Ub + iV b

)
,

where Ub(µ) + iVb(µ) = u(µ,−Q) + iv(µ,−Q).

Here Sq and Rq are integral transformations which depend upon
the conformal modulus Q(t).

Hence if we know (V ,Vb) then we can use the Hilbert-Garrick
transformation to determine (U,Ub) or vice versa.
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Determining α

To find the value of α (the tangential fluid velocity at the surface)
we note that zt/zζ (ζ = µ+ iν) is an analytic function with
boundary values

Im

(
zt

zµ

)∣∣∣∣
ν=0

=
Ψµ

J
and Im

(
zt

zµ

)∣∣∣∣
ν=−Q(t)

= 0.

Hence the real part of zt/zµ on the free-surface (which is just α/J)
can be determined by the Hilbert-Garrick transformation as

α

J
= α+ (K+ Rq)

(
−
Ψµ

J

)
= α− T−1

q

(
Ψµ

J

)
.

Easy to show that α = 0.



Fluid Problem and Governing Equations General conjugate function theory Return to Fluid Problem Sloshing with Baffles Dynamic

Also, using the Hilbert-Garrick transformation we can relate

X − µ = T−1
q (Y ) and Ψ = Tq(Φ).

Therefore we integrate

Yt = −
Ψµ

J
Xµ − T−1

q

(
Ψµ

J

)
Yµ,

Φt = −g(Y − h0)−
1

2J
Φ2
µ +

1

2J
Ψ2

µ − T−1
q

(
Ψµ

J

)
Φµ,

forward in time using 4th order Runge-Kutta, from some initial
condition, for example if F (t) is given then

X (µ, 0) = µ, Y (µ, 0) = η0, Φ(µ, 0) = 0, Ψ(µ, 0) = 0.

Discretize the free-surface via

µk = (k − 1)
1

N
k = 1, ..., 2N.
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For this doubly-connected problem we can easily solve Laplace’s
equation for x , y , φ, and ψ, which give us the Fourier form of the
Hilbert-Garrick operators, for example

x − µ =

∞∑

n=1

An(t)
cosh((nπ(ν + Q)))

cosh(nπQ)
sin(nπµ),

y − ν = Q(t) +
∞∑

n=1

An(t)
sinh((nπ(ν + Q)))

cosh(nπQ)
cos(nπµ).

Hence we can use FFTs to determine the values of An(t) on ν = 0,
reconstruct X − µ in Fourier space and then invert.

X

Y

1

2

3

4

5

6

X

Y

1

2

3

4

5

6



Fluid Problem and Governing Equations General conjugate function theory Return to Fluid Problem Sloshing with Baffles Dynamic

Forced variable bottom sloshing

Forced rectilinear sloshing in rectangular tank with bottom
topography. Harmonic forcing F (t) = ǫ cos(ωt).

Horizontal and vertical velocities:

x

y

x

y

x

y

x

y
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Can we apply a similar complex analysis approach to incorporate N

infinitely thin side-wall baffles?

y = Lf(x∗)

x∗

y∗

0 L

b(1) b(2)

b(N)

−LH

(x0, y0) = (x(µ, 0), y(µ, 0)), µ ∈ [−1, 1],

(xn, yn) = (x(µ,−ŷn), y(µ,−ŷn)), µ ∈ [−L̂n, L̂n],

or µ ∈ [−1,−1 + L̂n] ∪ [1− L̂n, 1],

(xN+1, yN+1) = (x(µ,−Ĥ), y(µ,−Ĥ)), µ ∈ [−1, 1].
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Again we map the domain

b(2)

y = f (x)

x

y

0 1

b(1)
b(2)

b(N)

−H

−1

z − plane ν
ξ − plane

̂
b(2)

µ

0 1
̂
b(1) ̂

b(2)

̂
b(N)

−
̂
H

−1

ĉ(1)

ĉ(2) ĉ(N)

ĉ(N+1)

ĉ(0)

η − plane

c(1)c(2) c(N)c(N+1)

c(0)

ζ − plane

Final mapping uses Schottky-Klein prime functions via the
MATLAB routines of Crowdy, Kropf, Green and Nasser.
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In the mapped domain we again apply Cauchy’s theorem

κ(ζ) = −
1

2πi

∮

C

κ(ζ ′)

ζ ′ − ζ
dζ ′,

where

κ(ζ) = (x(ζ)− µ(ζ)) + i(y(ζ)− ν(ζ)) = x̃(ζ) + iỹ(ζ).

which can be expressed as

x̃(ζ) + iỹ(ζ) =
1

2π

∫ π

−π

x̃0(θ) + iỹ0(θ)

eiθ − ζ
eiθ dθ

−

N∑

n=1

qn

2π

∫ 2π

0

x̃n(φ) + iỹn(φ)

δn + qneiφ − ζ
eiφ dφ

−
qN+1

2π

∫ π

−π

x̃N+1(θ) + iỹN+1(θ)

δN+1 + qN+1eiθ − ζ
eiθ dθ.
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This is then evaluated on the free-surface, the bottom and on each
baffle to generate N + 2 complex equations or 2N + 4 real
equations. For example

x̃0(σ) + iỹ0(σ) =
1

2π

∫ π

−π

(x̃0(θ) + iỹ0(θ)) dθ

−
i

2π
PV

∫ π

−π

cot

[
1

2
(θ − σ)

]
(x̃0(θ) + iỹ0(θ))dθ

−

N∑

n=1

qn

π

∫ π

−π

Fn0(σ, φ)(x̃n(φ) + iỹn(φ))dφ

−
qN+1

π

∫ π

−π

F(N+1)0(σ, θ)(x̃N+1(θ) + iỹN+1(θ))dθ.

The ‘F ’ functions are known functions in terms of the circle
conformal moduli.
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In order to perform a feasibility study for using this complex
analysis approach for the dynamic fluid problem, we first consider a
kinematic problem, such that the free-surface is specified, i.e
η(x , t) = f (x) = a cos(πx).

In this case it means that we know ỹ0, ỹ1, ỹ2, ..., ỹN+1 and we
need to calculate the corresponding x̃n values.

We discretize the integrals with equally spaced grid points, and
then evaluate the equations from Cauchy’s theorem at the
mid-point of these grid points. This the PV integrals can be
evaluated via the Trapezoidal rule.

These equations are then evaluated and we iteratively update the
values of ŷn, L̂n and Ĥ . Essentially this is fixing the conformal
moduli. (Ĥ(t) equivalent to Q(t) in earlier notation)
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This feasibility study shows that the dynamic problem should be
obtainable.

Some issues arising are:

Equal spacing in µ does not translate to equal spacing in θ
etc. So interpolation is needed at each iteration. Will this
cause issues?

For the dynamic coupled problem F (t) satisfies an equation similar
to

(mv +mf )F̈ + νF = −
d

dt

∫ L

0

∫ η(x ,t)

0

∂φ

∂x
dy dx ,

hence integral needs to be evaluated. But using Green’s theorem
this appears to be just line integrals along the surface, bottom and
baffles.

Thank you


	Fluid Problem and Governing Equations
	

	General conjugate function theory
	

	Return to Fluid Problem
	

	Sloshing with Baffles
	

	Dynamic Problem
	


