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Introduction

Topics of this presentation:
▶ Anamolous dissipation and Onsager’s conjecture
▶ (Inviscid) primitive equations of oceanic and atmospheric

dynamics
▶ Sufficient conditions for energy conservation of weak solutions

to the hydrostatic Euler equations
▶ New type of weak solution using harmonic analysis
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Description of an inviscid fluid

One of the main models of fluid mechanics are the incompressible
Euler equations

∂tu + (u · ∇)u +∇p = 0, ∇ · u = 0.

Classical solutions of these equations conserve the kinetic energy
(by an elementary computation), which is given by

1
2

∫
T3
|u|2dx .

What happens for weak solutions?
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Onsager’s conjecture

The conjecture formulated in [Onsager, 1949] states that:
▶ If u(·, t) ∈ C0,θ with θ > 1

3 , the solution converges energy.
▶ If u(·, t) ∈ C0,θ with θ < 1

3 , there exist solutions that dissipate
energy (not necessarily all solutions).

Therefore θ = 1
3 is known as the Onsager exponent. It is the

threshold for energy conservation. Here a regularity condition is tied
to a physical phenomenon.

In particular, to model anomalous dissipation, weak solutions are
necessary.
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Lars Onsager

In 1949, Lars Onsager published the paper ‘Statistical
Hydrodynamics’. In it he introduced two very important concepts in
hydrodynamical turbulence:

▶ The concept of anolamous dissipation, which states that there
is a mechanism for energy dissipation independent of viscosity.

▶ A theory for the spontaneous formation of large scale, long
lived vortices in 2D fluids.

We will only discuss the former. It discusses a very fundamental
fact of the Euler equations. The viscosity is not the only source of
energy dissipation.
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Onsager’s paper

“It is of some interest to note that in principle, turbulent
dissipation as described could take place just as readily
without the final assistance by viscosity. In the absence of
viscosity, the standard proof of the conservation of energy
does not apply, because the velocity field does not remain
differentiable! In fact it is possible to show that the velocity
field in such ”ideal” turbulence cannot obey any LIPSCHITZ
condition of the form

|v(r ′ + r)− v(r ′)| ≤ (const.)rn,

for any order n greater than 1/3; otherwise the energy is
conserved.”
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Experimental and numerical verification

Figure: Verification of anomalous dissipation, sources:
[Sreenivasan, 1998; Pearson, Krogstad, and van de Water, 2002]
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Approaches to prove energy conservation

Theorem (Constantin-E-Titi 1994)

If u ∈ L3((0,T );Bθ
3,∞(T3)) with θ > 1

3 is a weak solution of the Euler
equations, it must conserve the energy.

▶ Commutator estimates, see [Constantin, E, and Titi, 1994].
One derives a global energy conservation equation, with
additional ‘source’ terms which are zero under sufficient
regularity using commutator estimates.

▶ Energy equation, see [Duchon and Robert, 2000]. One derive
an equation describing the local energy balance, which
contains a term that captures the lack of regularity. This is
roughly the approach Onsager used in 1949.
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Convex integration

Theorem (Isett 2018; Buckmaster-De Lellis-Székelyhidi-Vicol
2019)

Let e : [0,T ] → R+ be any smooth nonnegative function. Then for
any θ < 1

3 there exists a solution u ∈ Cθ((0,T )× T3) of the Euler
equations such that ∫

T3
|u(x , t)|2dx = e(t).

9



Previous work on the Onsager conjecture

▶ First half of Onsager conjecture: [Eyink, 1994; Constantin, E,
and Titi, 1994; Duchon and Robert, 2000; Cheskidov,
Constantin, Friedlander, and Shvydkoy, 2008; Cheskidov,
Lopes Filho, Nussenzveig Lopes, and Shvydkoy, 2016;
Robinson, Rodrigo, and Skipper, 2018; Bardos, Gwiazda,
Świerczewska-Gwiazda, Titi, and Wiedemann, 2019]

▶ Second half of Onsager conjecture: [De Lellis and Székelyhidi,
2009, 2010; Buckmaster, De Lellis, Isett, and Székelyhidi,
2015; Daneri and Székelyhidi, 2017; Isett, 2018; Buckmaster,
De Lellis, Székelyhidi, and Vicol, 2018]
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Primitive equations

The primitive equations are given by

∂tv + (v · ∇)v + w∂zv +∇p +Ωv⊥ − νh∆v − νz∂zzv = 0,
∂zp + T = 0,
∇ · v + ∂zw = 0,
∂tT + v · ∇T + w∂zT − κh∆T − κz∂zzT = Q.

They arise from the small aspect ratio, see [Azérad and Guillén,
2001; Li and Titi, 2019].
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Previous work on the primitive equations I

For the viscous primitive equations:

▶ Derivation: [Richardson, 1922; Lions, Temam, and Wang, 1992]

▶ Short-time existence: [Guillén-González, Masmoudi, and
Rodrı́guez-Bellido, 2001]

▶ Global existence: [Cao and Titi, 2007; Kobelkov, 2006; Kukavica and
Ziane, 2007; Hieber and Kashiwabara, 2016]

▶ Small-aspect ratio: [Azérad and Guillén, 2001; Bresch,
Guillén González, Masmoudi, and Rodrı́guez Bellido, 2001; Li and
Titi, 2019]

For the inviscid primitive equations:

▶ Ill-posedness in Sobolev spaces: [Renardy, 2009; Han-Kwan and
Nguyen, 2016]

12



Previous work on the primitive equations II

▶ Finite-time singularity: [Cao, Ibrahim, Nakanishi, and Titi, 2015;
Wong, 2015]

▶ Local well-posedness for analytic data: [Kukavica, Temam, Vicol, and
Ziane, 2011; Gerard-Varet, Masmoudi, and Vicol, 2020]

▶ With rotation: [Ibrahim, Lin, and Titi, 2021; Ghoul, Ibrahim, Lin, and
Titi, 2022]

▶ Nonuniqueness of weak solutions for the inviscid case: [Feireisl,
2016; Chiodaroli and Michálek, 2017]
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Hydrostatic Euler

The hydrostatic Euler equations (inviscid Primitive equations of
Oceanic and Atmospheric Dynamics) are given by

∂tuh + (uh · ∇)uh + w∂zuh +∇p = 0,
∇ · uh + ∂zw = 0, ∂zp = 0.

∇ is 2-dimensional and w is no longer an independent quantity.
The formally conserved quantity is ∥u∥2

L2 + ∥v∥2
L2 .

We looked at an analogue of Onsager’s conjecture for the
hydrostatic Euler equations. We want to find sufficient conditions for
a weak solution of the equations to conserve energy.
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Main differences with the Euler equations

The equation for w can be written as

w = −
∫ z

0

(
∂xu + ∂yv

)
dz ′.

Main features:
▶ Nonlocality
▶ Anisotropy in regularity

What to do with w?
▶ Fix a regularity assumption on w
▶ Fix sufficiently strong assumptions on u and v , without explicit

assumptions on w
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Approaches to prove energy conservation

Approaches to formulate Onsager-type conjectures:
▶ Use anisotropic conditions
▶ Weaken regularity requirements on w (make it a functional)
▶ Make no assumptions on w

Two different notions of weak solutions
▶ Assume that w ∈ L2

t (L
2
x) and u, v ∈ L∞

t (L2
x) (weak solution)

▶ Assume that w ∈ L2
t (B

−s
2,∞) and u, v ∈ L4

t (B
s+
4,2) for 0 < s < 1

2
(very weak solution)
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Result for weak solutions

We first have the following ‘classical’ Onsager-type conjecture.

Theorem (DB-Markfelder-Titi 2022)

Let u be a weak solution of the hydrostatic Euler equations with
u, v ∈ L∞

t (L2
x) and w ∈ L2

t (L
2
x), then if u, v ∈ L4

t (B
1/2+
x ) the solution

conserves energy.

We assume that w(·, t) ∈ L2, this implicitly means that
∂xu + ∂yv(·, t) ∈ L2 by the equation

w = −
∫ z

0

(
∂xu + ∂yv

)
dz ′.
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Anisotropic conditions

One can also make use of the anisotropy of the equation to obtain
the following result:

Theorem (DB-Markfelder-Titi 2022)

Let u, v have Besov regularity Bα
3,∞ in the z-direction, and regularity

Bβ
3,∞ in the horizontal directions, then the solution conserves

energy if

α >
1
3
, β >

2
3
, β + 2α > 2.

So the Onsager exponent in the z-direction can be ‘lowered’ to 1
3 at

the expense of a higher exponent in the horizontal directions.
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Definition of very weak solution

We introduce a new notion of weak solution of the hydrostatic Euler
equations.

Definition
Let u, v ∈ L∞

t (L2
x) ∩ L4

t (B
s+
4,2) and w ∈ L2

t (B
−s
2,∞) for fixed 0 < s < 1

2 .
A very weak solution satisfies (with a similar equation for v ),∫ T

0

∫
T3

u∂tϕ1dx dt +
∫ T

0
⟨uu,∇ϕ1⟩dt +

∫ T

0

∫
T3

Ωvϕ1dx dt

+

∫ T

0

∫
T3

p∂xϕ1dx dt = 0.

How to make sense of uw and vw as a distribution?
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Littlewood-Paley theory

Littlewood-Paley theory is about localisation in frequency space. Let
χ ∈ D(B(0,4/3)) and φ ∈ D(A(3/4,8/3)) such that we have the
partition of unity.

χ(ξ) +
∞∑

j=0

φ(2−jξ) = 1.

We introduce the dyadic blocks as follows

∆̂j f = φj f̂ .

20



Paradifferential Calculus

Bony’s decomposition of a product is given by

fg = Tf g + Tg f + R(f ,g).

Here Tf g and Tg f are called the paraproducts which are given by

Tf g =
∞∑

j=−1

j−2∑
i=−1

∆i f∆jg, Tg f =
∞∑

j=−1

j−2∑
i=−1

∆ig∆j f .

These are the ‘low-high’ and ‘high-low’ frequencies. The resonance
term R(f ,g) is given by

R(f ,g) =
∑

|k−j|≤1

∆k f∆jg.

These are the ‘high-high’ frequencies. Tf g and Tg f always lie in
some Besov space, but the trouble might be in the resonance term.
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Paraproduct estimates

Lemma (Paraproduct estimates)

If f ∈ Lp1 and g ∈ Bβ
p2,q then

∥Tf (g)∥Bβ
p,q

≤ C∥f∥Lp1∥g∥Bβ
p2,q

.

If f ∈ Bα
p1,q1

,g ∈ Bβ
p2,q2

with α < 0 and β ∈ R

∥Tf (g)∥Bα+β
p,q

≤ (1 − 2α)−1∥f∥Bα
p1,q1

∥g∥Bβ
p2,q2

.

Note that we assumed that

1
p
=

1
p1

+
1
p2

,
1
q
= min

{
1,

1
q1

+
1
q2

}
.
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Resonance estimates

Lemma (Resonance estimates)

Assume that f ∈ Bs1
p1,q1

and g ∈ Bs2
p2,q2

such that s1 + s2 > 0, then

∥R(f ,g)∥Bs1+s2
p,q

≤ ∥f∥Bs1
p1,q1

∥g∥Bs2
p2,q2

,

under the assumption that

1
p
=

1
p1

+
1
p2

≤ 1,
1
q
=

1
q1

+
1
q2

≤ 1.
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Sufficient condition for very weak solutions

By applying the paradifferential calculus we obtain the next lemma.

Lemma
Let 0 < s < 1

2 , w(·, t) ∈ B−s
2,∞ and u(·, t), v(·, t) ∈ Bs+

4,2, then
uw(·, t), vw(·, t) ∈ B−s

1,∞.

Theorem (DB-Markfelder-Titi 2022)

Let (u, s) be a very weak solution of the hydrostatic Euler
equations, then if u, v ∈ L4

t (B
s+1/2+
4,∞ ), energy is conserved.

Moreover, if u, v ∈ L4
t (B

3/4+
4,∞ ) (with no conditions on w) then energy

is conserved.

So the Onsager exponent increases with s. We now have an
Onsager ‘scale’.
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Summary and further results

Theorem (DB-Markfelder-Titi 2022)

Energy is conserved under any of the following conditions.

▶ If u, v ∈ L4
t (B

1/2+
4,∞ ) and w ∈ L2

t (L
2
x), also u, v ∈ L3

t (C
1/2+
log )

suffices
▶ If w ∈ L3

t (C
β
x ) and u, v ∈ L3

t (C
α
x ) with α > 1

2 − 1
2β

▶ If w ∈ L2
t (L

2
x) and u and v have Besov regularity Bα

3,∞ vertically
and Bβ

3,∞ horizontally if α > 1
3 , β > 2

3 and β + 2α > 2

▶ If u, v ∈ L3
t (W

1,p
x ∩ Cβ

x ) with β > 1
2 and p > 1 or u, v ∈ L3

t (W
1,p
x )

with p > 6
▶ If u, v ∈ L3

t (B
1+
9/4,∞)
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Conclusion

▶ The hydrostatic Euler equations have a ‘family’ of Onsager
conjectures

▶ This is due to the anisotropic regularity and nonlocal nature of
the velocity field

▶ The different approaches can probably be combined
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Onsagerâs conjecture for general conservation laws. Journal of Nonlinear Science, 29(2):501–510, 2019.
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