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Università di Pavia - Italy

”Mathematics of geophysical fluid dynamic models of
intermediate complexity: qualitative and statistical behaviour”

Reading



Stationary solutions for the equations of 2D fluids

Outline

1 The stochastic Navier-Stokes equations
the stochastic Navier-Stokes eqs with fractional dissipation

2 The damped Euler eqs with stochastic forcing term: invariant
measures
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Stationary solutions for the equations of 2D fluids

The stochastic Navier-Stokes equations

For a homogeneous viscous incompressible fluid{
∂tu − ν∆u + (u · ∇)u +∇p = f + n

∇ · u = 0

u = u(t, y) vector velocity
p = p(t, y) (scalar) pressure
defined for t ≥ 0, y ∈ D ⊂ Rd

ν > 0 kinematic viscosity
f deterministic forcing term
n noise term

The problem is well posed for d = 2
• spatial domain:

- D bounded and smooth with Dirichlet b.c.
- D = [0, L]2 with periodic b.c.
- D = R2

-
...

• noise: smooth enough in space, white in time
n = ∂tW
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The stochastic Navier-Stokes equations

Fix D smooth and bounded, assume Dirichlet b.c.
C∞ = {u ∈ [C∞0 (D)]2 : div u = 0}
H = C∞L2

V = H ∩ [H1
0 (D)]2

V ′ dual of V

Q covariance of the Wiener process

Theorem (solutions)

Let u0 ∈ H, f ∈ L2(0,T ;V ′), Q trace class operator in H.
Then there exists a unique solution u to the Navier-Stokes
equations. The paths are a.s. in C ([0,T ];H) ∩ L2(0,T ;V ).
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The stochastic Navier-Stokes equations

As soon as a unique solution exists for any u0 ≡ x ∈ H, one define
the Markov semigroup Pt : Bb(H)→ Bb(H)

Ptφ(x) = E[φ(u(t; x))]

Its dual acts on measures µ defined on Borel subsets of H:∫
φdP∗t µ =

∫
Ptφdµ

A probability measure µ is said to be an invariant measure if

P∗t µ = µ ∀t ≥ 0

i.e. ∫
Ptφdµ =

∫
φdµ ∀t ≥ 0, φ ∈ Bb(H).
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The stochastic Navier-Stokes equations

Ergodicity

Let {ej} be the complete orthonormal system of the eigenfunctions
of ∆: −∆ej = λjej . Set

W (t) =
∞∑
j=1

σjwj(t)ej

for a sequence of i.i.d. real Wiener processes {wj}j .
Assume the noise has one of the following properties
• σj 6= 0 for a finite number of j , suitably chosen
• σj 6= 0 for all j and σj ∼ λ−aj for some a > 3

8

Theorem (invariant measures)

On the torus...
There exists a unique invariant measure for the Navier-Stokes
equations.

f can be added....
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The stochastic Navier-Stokes equations

The unique invariant measure µ is ergodic: for µ-a.e. x

lim
T→∞

1

T

∫ T

0
φ(u(t; x)) dt =

∫
φ dµ a.s.

for any φ ∈ L1(µ)
...
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The stochastic Navier-Stokes equations

the stochastic Navier-Stokes eqs with fractional dissipation

For α > 0: {
∂tu + ν(−∆)αu + (u · ∇)u +∇p = n

∇ · u = 0

0 < α < 1: hypoviscous Navier-Stokes eqs
α > 1: hyperviscous Navier-Stokes eqs

Hypoviscous is more difficult but solutions smooth to an arbitrary degree

of regularity after an arbitrarily short time.

Similar results (on the torus): for solutions and for invariant
measures

Theorem (Constantin, Glatt-Holtz, Vicol. 2014)

There exists an N = N(α,Q) such that if σj 6= 0 for all
j = 1, . . . ,N, there exists a unique and ergodic invariant measure.

The viscosity is fixed.
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The stochastic Navier-Stokes equations

the stochastic Navier-Stokes eqs with fractional dissipation

Why there is ergodicity for any α > 0?

{
∂tu + ν(−∆)αu + (u · ∇)u +∇p = n

∇ · u = 0

are a perturbation of the unforced Euler equations{
∂tu + (u · ∇)u +∇p = 0

∇ · u = 0

for which invariants are known (the energy , the enstrophy, . . .).
Adding a dissipative term and a stochastic forcing term: a balance
is reached and therefore there exist invariant measures.
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the stochastic Navier-Stokes eqs with fractional dissipation

{
∂tu + ν(−∆)αu + (u · ∇)u +∇p = f + n
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α = 0?

Dissipation of order 0 ; damping{
∂tu + γu + (u · ∇)u +∇p = n

∇ · u = 0

damped Euler equations with stochastic force
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The damped Euler eqs with stochastic forcing term: invariant measures

In vorticity form:
define the vorticity ξ = ∇⊥ · u

dξ + [γξ + u · ∇ξ] dt = dW

Existence of stationary solutions has been proved when γ > 0 (see
Bessaih 2008).

To speak of invariant measures one has to work in the space L∞,
where uniqueness holds, in order to define a Markov semigroup Pt

Ptφ(χ) = E[φ(ξχ(t))]

Existence of invariant measures for the stochastic damped Euler
equation is obtained by means of the Bogoliubov-Krylov’s
technique, suitably modified so to work in space L∞ (not a Polish
space).
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The damped Euler eqs with stochastic forcing term: invariant measures

Bogoliubov-Krylov’s technique

The ”classical” version (see Da Prato-Zabczyk) is the following.

Define the Markov semigroup Pt : Bb(X )→ Bb(X ) as

Ptφ(χ) = E[φ(ξχ(t))]

Proposition

Let X be a separable Banach space. If

• (Feller property) Pt : Cb(X )→ Cb(X )

• the sequence of measures µn =
1

n

∫ n

0
P∗s δ0ds is tight in X

then there exists a measure µ on the Borelian subsets of X which
is invariant, that is∫

Ptφ dµ =

∫
φ dµ ∀t ≥ 0, φ ∈ Cb(X ).
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The damped Euler eqs with stochastic forcing term: invariant measures

Work in L∞ equipped with the bounded weak? topology or the
weak? topology.

[the weak? topology is the weakest topology for which the mappings L∞ 3 ξ 7→ 〈ξ, g〉 ∈ R are continuous for

any g ∈ L1

the bounded weak? topology is the finest topology on L∞ that coincides with the weak? topology on every norm

bounded subset of L∞]

We avoid to work with the strong topology on L∞.

L∞ is not separable when we consider the strong topology and it is
not a metric space when we consider a weak topology: never a
Polish space!

Let us look at the ”ingredients” of Bogoliubov-Krylov’s techinque:

Feller+tightness
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The damped Euler eqs with stochastic forcing term: invariant measures

Tightness

A nice issue with the weak topology has been introduced by
Maslowski and Seidler (1999): use weak topologies to get
tightness. It is easier than with strong topology. But they worked
in a separable Hilbert space!
For the equation

dξ + (γξ + u · ∇ξ) dt = dW

(similar structure as a transport eq: easy to get estimates in Lp and L∞)

we can prove uniform L∞-bounds in probability (for any γ > 0).
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The damped Euler eqs with stochastic forcing term: invariant measures

Proposition (w? tightness)

Let γ > 0. Then, for any ε > 0 there exists Rε > 0 such that

inf
t≥0

P{‖ξ0(t)‖L∞ ≤ Rε} ≥ 1− ε.

Since the balls in L∞ are compact for the weak? topology (and for
the bounded weak? topology), we get tightness of the sequence of
measures

µn =
1

n

∫ n

0
L(ξ0(s))ds

with respect to the weak? topology.
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The damped Euler eqs with stochastic forcing term: invariant measures

Looking for the transition semigroup

We can prove a weak form of continuous dependence on the initial
data: χ 7→ ξχ(t) is sequentially continuous.

Proposition

Let γ ≥ 0.
Given a sequence {χn}n ⊂ L∞ which converges weak? in L∞ to
χ ∈ L∞, we have that, P-a.s., for every t > 0 the sequence{
ξχ

n
(t)
}
n
converges weak? in L∞ to ξχ(t).

Therefore we have a ”weak Feller” property for the operator Pt

defined as
Ptφ(χ) = E[φ(ξχ(t))].
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The damped Euler eqs with stochastic forcing term: invariant measures

χ 7→ ξχ(t) 7→ φ(ξχ(t)) 7→ E[φ(ξχ(t))] = Ptφ(χ)

Proposition

The operator Pt is sequentially weak? Feller in L∞, that is

Pt : SCb(L∞, Tw?)→ SCb(L∞, Tw?) (1)

for any t ≥ 0.

Since C (L∞, Tbw?) = SC (L∞, Tw?), this is equivalent to be Feller
with respect to the bounded weak? topology

Pt : Cb(L∞, Tbw?)→ Cb(L∞, Tbw?) (2)
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The damped Euler eqs with stochastic forcing term: invariant measures

Markov property

For every φ ∈ SCb(L∞, Tw?), χ ∈ L∞ and t, s > 0

E [φ (ξχ(t + s)) |Ft ] = (Psφ) (ξχ(t)) P− a.s. (3)

obtained by an approximation (first, working in W 1,4, which is
separable; then we use that W 1,4 is dense in L∞ with respect to
the weak? topology Tw?).

Taking the expectation, we get

E [φ (ξχ(t + s))] = E [(Psφ) (ξχ(t))]

which can be rewritten as (semigroup property)

(Pt+sφ)(χ) = (Pt(Psφ)) (χ).

Hence we have Pt+s = PtPs on SCb(L∞, Tw?).
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The damped Euler eqs with stochastic forcing term: invariant measures

Summing up: we have

• a Markov semigroup {Pt}t acting on Cb(L∞, Tbw?)

• a tight sequence of measures µn with respect to the bounded
weak? topology Tbw?

We are ready to use the Bogoliubov-Krylov’s technique to get
existence of invariant measures.
We apply Prokhorov’s theorem in the version given by Jakubowski
(1997) so to work in nonmetric spaces.
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The damped Euler eqs with stochastic forcing term: invariant measures

Existence of invariant measures

Theorem (Bessaih, F)

Let γ > 0.
Then there exists at least one invariant measure µ for the
stochastic damped Euler equation.

This is a measure on the Borel subsets B(Tbw?) = B(Tw?) such
that ∫

Ptφ dµ =

∫
φ dµ

for all t ≥ 0 and φ ∈ Cb(L∞, Tbw?).
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Eulerian limit à la Kuksin (vanishing viscosity limit): stationary sols for the deterministic unforced Euler eqs

Kuksin in a series of papers considers the vanishing viscosity limit
of {

∂tu + [−ν∆u + (u · ∇)u +∇p] dt =
√
νdW

∇ · u = 0

In J. Stat. Phys. (2004) he proves that given any family of
stationary solutions {uν}ν>0 there exists a subsequence (with
νn → 0) such that uνn converges in distribution to a non-trivial
stationary process U, solving the Euler eq. (on the torus){

∂tu + [(u · ∇)u +∇p] dt = 0

∇ · u = 0

Crucial estimates for the viscous eqs are

d

dt
E‖uν(t)‖2

L2 + 2νE‖∇uν(t)‖2
L2 = νq

d

dt
E‖ξν(t)‖2

L2 + 2νE‖∇ξν(t)‖2
L2 = νq⊥
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Eulerian limit à la Kuksin (vanishing viscosity limit): stationary sols for the deterministic unforced Euler eqs

Therefore from

d

dt
E‖uν(t)‖2

L2 + 2νE‖∇uν(t)‖2
L2 = νq

d

dt
E‖ξν(t)‖2

L2 + 2νE‖∇ξν(t)‖2
L2 = νq⊥

(here ξ = ∇⊥ · u is the vorticity) we get for a stationary solution

2E‖∇uν(t)‖2
L2 = q

2E‖∇ξν(t)‖2
L2 = q⊥

; tightness (uniform estimates for ν > 0)
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Eulerian limit à la Kuksin (vanishing viscosity limit): stationary sols for the deterministic unforced Euler eqs

The limit U has energy and enstrophy which are time-independent
random constants, and U depends on the covariance of the noise,
i.e. q and q⊥:

q2

2q⊥
≤E‖U(t)‖2

H0 ≤ 1
2q

E‖U(t)‖2
H1= 1

2q

E‖U(t)‖2
H2 ≤ 1

2q
⊥

Does the limit depend on the Laplace operator (i.e. on the
approximating eq)? What happens for

∂tu + [ν(−∆)αu + (u · ∇)u +∇p] dt =
√
νdW

when α 6= 1?
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Eulerian limit à la Kuksin (vanishing viscosity limit): stationary sols for the deterministic unforced Euler eqs

Following the idea of Kuksin we get that the hypo- or
hyper-viscous Navier-Stokes eqs has an Eulerian limit

Theorem (hypoviscous eq )

For any 0 < α < 1 there exists a stationary process

U(p) ∈ L2
loc(R+;H1+α), dU(α)

dt ∈ L1
loc(R+;Hα) solving the Euler

equation. Moreover

1
2q

(
q

q⊥

)α
≤E‖U(α)(t)‖2

H0 ≤ 1
2q (4)

E‖U(α)(t)‖2
Hα= 1

2q (5)

E‖U(α)(t)‖2
Hα+1 ≤ 1

2q
⊥ (6)

Similar result (even stronger) for the hyperviscous eqs.
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Eulerian limit à la Kuksin (vanishing viscosity limit): stationary sols for the deterministic unforced Euler eqs

Moreover, if the noise mixes the dynamics (the noise acts on at
least four particular directions), then the Eulerian limits obtained
for different α and α̃ are different

since if they were equal U(α) = U(α̃) = U, then
E‖U(t)‖2

Hα = 1
2q = E‖U(t)‖2

Hα̃

but this is true only if U =
∑

k∈Z2 Ukek has at most four Fourier
modes {Uk}|k|=1.

conclusion:
A quite large number of stationary solutions exist for the
deterministic unforced 2D Euler eqs (on the torus).

They depend on the intensity of the noise (q and q⊥) and on the
power of the Laplacian α > 0.

They are not the vanishing solution U = 0.
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