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Envelope equation

NLS & Ocean waves

Gravity waves can be represented by an envelope,

ηpx , tq “ Re
”

upx , tqe ipk0¨x´ω0¨tq
ı

, ω0 “
a

gk0.

Asymptotically, the envelope satisfies the focusing cubic NLS

iBtu `
p

2
∆u `

q

2
|u|2u “ 0,

where p “ ppk0q " 1, q “ qpk0q ! 1.

[Mei, ‘Theory and applications of ocean surface waves’, World

Scientific]
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The classical MI

Modulation instability (MI)

The plane wave

u0px , tq “ Ae i
q
2
A2t

is an exact solution of

iBtu `
p

2
∆u `

q

2
|u|2u “ 0.

If we look for a solution of the form

upx , tq “ u0px , tqp1` δpx , tqq,

we get

u0
´

iδt `
p

2
∆δ `

q

2
A2
pδ ` δ̄q `

q

2
A2
pδ ` δ̄qδ `

q

2
A2
|δ|2p1` δq

¯

“ 0.

If “δ ! 1” we can linearise,

iδt`
p

2
∆δ`

q

2
A2
pδ`δ̄q “ 0 ñ δ “ e iζpx´2πΩpζqtq, Ω2

“

´ p
4π

¯2
ˆ

ζ2
´ 2

q
p

A2

˙

.
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The classical MI

Modulation instability (MI): Linear implications

If u0 is a plane wave solution of

iBtu `
p

2
∆u `

q

2
|u|2u “ 0,

then a perturbation δ will tend to grow exponentially in time,
according to

δ̂pk, tq « δ̂pk, 0qegpkqt .
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The classical MI

Modulation instability (MI): Nonlinear stage

Computation inspired by

[Biondini & Mantzavinos 2016; Biondini, Mantzavinos & Trillo 2018]
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The classical MI

Modulation instability (MI): Nonlinear stage

With rough initial inhomogeneity (white noise ˆ Gaussian envelope),

basically same pattern 6 / 20
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Rogue Waves

Rogue Waves: a turning point in the 2000s

MV Derbyshire, largest British ship to be lost at sea, in 1980. In
1994-1998 an extensive underwater survey was made. In 2000 the
leading explanation that emerged was that it was sank by a single
wave [Faulkner, SNAME 1999].

Draupner wave (Jan. 1 1995), 26m trough to peak.
10,000-40,000 year wave by standard engineering
computations
cf. [Rainey & Colman 2014]
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Rogue Waves

Rogue Waves and the MI

Does the MI play a significant role in Rogue Waves?

Fundamental issue: realistic sea states are not plane waves.

Can we have a “generalised MI” actually applicable to
realistic sea states?
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Statistical description of sea states

Typical sea states

Sea states are (locally) stationary and homogeneous random
processes characterised by their power spectrum,

E
”

ηpx , tqηpx 1, tq
ı

“ Γpx ´ x 1q ` op1q,

FyÑk rΓpyqs “ Ppkq

[Komen et al., ‘Dynamics and modelling of ocean waves’, CUP;
Ochi, ‘Ocean waves: the stochastic approach’, CUP]

This leads to a representation of the form

ηpx , tq “
ÿ

j

Zj

a

Ppkjqδkj sinpkjx ´ ωj t ` φjq,

where Zj are normal iid RV and φj are Up0, 2πq iid RV.

These power spectra form the vast majority of data on ocean waves.
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The Alber equation: idea

The Alber equation

Idea: investigate perturbations on

ηpx , tq “
ÿ

j

Zj

a

Ppkjqδkj sinpkjx ´ ωj t ` φjq,

assuming NLS dynamics and taking ensemble averages.

I. E. Alber, Proceedings of the Royal Society A (1978)
„ 240 citations in Google scholar

This talk is based on:

A. Athanassoulis, G. Athanassoulis and T. Sapsis,
Journal of Ocean Engineering and Marine Energy (2017)

A. Athanassoulis, OMAE 2018

A. Athanassoulis, G. Athanassoulis, M. Ptashnyk and T. Sapsis,
Kinetic and Related Models (2020)

A. Athanassoulis and O. Gramstad, Fluids (2021)

10 / 20



Introduction Ocean waves and the Alber equation Onset of MI

The Alber equation: state of the art

Key results

Consider a background solution η0 with autocorrelation

Erηbpx , tqηbpx
1, tqs “ Γpx ´ x 1q,

and an inhomogeneity δ such that

Er
`

ηbpx , 0q ` δ0pxq
˘`

ηbpx
1, 0q ` δ0px

1
q
˘

s “ Γpx ´ x 1q ` ερpx , x 1, 0q.

Then ρpx , x 1, tq evolves in time under

iBtρ`
p

2

`

∆x ´∆1
x

˘

ρ`q
“

Γpx ´ x 1q ` ερpx , x 1q
‰ “

ρpx , xq ´ ρpx 1, x 1q
‰

“ 0

• (In)stability condition on Γpx ´ x 1q ô Ppkq [Alber, 1978, PRSA]

• Stable case is Landau damping [AAPS, 2020, KRM]

• Extrapolating from nonlinear LD results, nonlinear stability is only
expected if }δ0}Hs ! 1.

• In the limit Ppkq Ñ Cδpk ´ k0q we recover the classical MI.

More details here. 11 / 20
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The Alber equation: state of the art

The Landau-Alber bifurcation

Stable case: Landau damping

Dκ ą 0 inf
X ,Reωą0

|1´ rhrPspX , ωq| ě κ.

and
ρ does not grow under linearised dynamics

Unstable case: Modulation instability

DX˚ DReω˚ ě 0 rhrPspX˚, ω˚q “ 1

and
ρ grows exponentially under linearised dynamics

First constructive way to check stability: [AAPS, 2020, KRM]
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Implications

Two kinds of functions

Erηpx , tqηpx 1, tqs “ Γpx ´ x 1q ` ερpx , x 1, tq

Solution is broken down to
spatially homogeneous part ` localised part

Gen. Modulation instability ô Growth of the localised part
Landau damping ô Dispersion of the localised part

Fine print:
˚ timescale & nonlinear evolution

˚ smallness of initial localised perturbation for NL LD
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Metocean data

The JONSWAP parametric spectrum

The JONSWAP parametric spectrum is defined as

Ppkq “
α

2k3
e´

5
4 p

k0
k q

2

γexpr´p1´
?

k{k0q
2
{2δ2s, δ “ δpkrpmq “

"

0.07, k ď k0,
0.09, k ą k0,

α : power, Hs

γ : peakedness, narrowbandedness
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Metocean data

Stability region for JONSWAP [AAPS, 2020, KRM]

Unstable spectra: „ 0.2% of the time.

North Atlantic Scatter Diagram data from [DNV-GL, DNVGL-RP-C205:

Environmental Conditions and Environmental Loads, Tech. Rep., August 2017]
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Quantifying the onset of MI in realistic sea states

Phase-resolved, fully nonlinear simulations can put the
predictions of Alber equation to the test.

Size of events due to MI now quantifiable
ñ Not all extreme events are due to MI

[Janssen, (2003); A. & Gramstad, Fluids (2021)]
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What is MI? What is LD? Follow the theory.

Consider the “background solution” of

iut `
p

2
∆u `

q

2
|u|2u “ 0, upx , 0q “ u0pxq “

ÿ

Aje
2πirkjx`φj s

and the perturbed solution

ivt `
p

2
∆v `

q

2
|v |2v “ 0, vpx , 0q “ u0pxq ` δ0pxq

where δ0 is a small inhomogeneity.
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Beyond LD

In the “stable” case we expect LD for the linearised problem

Nonlinear LD typically requires }δ0}Hs

κ2 small enough

κ scales roughly with how far the spectrum is from being unstable

Hence LD does not apply to spectra close to instability
Still, inhomogeneity plateaus to something small
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Conclusions

Deep in the unstable regime, MI inevitably yield large events

Not all large events are due to MI – especially for stable spectra

More extensive Monte Carlo & crossing seas extensions
warranted

[A., Athanassoulis, Sapsis, JOEME (2017)]
Scalings of unstable modes

[Dematteis, Grafke, Vanden-Eijden, PNAS (2018)]
Monte Carlo + Large Deviations Theory
for fully Nonlinear simulations of mNLS

Thank you for your attention!
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Details of the computation

Initial data u0pxq :

u0pxq “
ÿ

j

Zj ¨

b

Ppkjqδkj ¨ ekjx´ωj t

a

Ppkjqδkj : average power associated with k P pkj , kj`1q

Zj : randomised coefficients 1?
2
pN p0, 1q ` iN p0, 1qq

Industry common practice: average over „ 500 realisations ...

Here: Keep same realisation of Zj , vary α, γ.

Here: a handful of realisations so far

1 / 8



Working with the (in)stability condition

How do you check

Dκ ą 0 inf
X ,Reωą0

|1´ rhpX , ωq| ě κ?

More or less through

DX˚ DReω˚ ě 0 rhpX˚, ω˚q “ 1

A nonlinear system of two equations in three unknowns,

Re
´

rhpX˚, a˚ ` ib˚q
¯

“ 1 and Im
´

rhpX˚, a˚ ` ib˚q
¯

“ 0,

where of course ω˚ “ a˚ ` ib˚.
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Denote by Hrf sptq the Hilbert transform,

Hrf sptq :“ p.v .
1

π

ż

f pxq

t ´ x
dx .

Theorem [A., Athanassoulis, Ptashnyk & Sapsis, KRM (2020)]

The following are equivalent:

(1). inf
Reωą0,
XPR

|1´ rhpX , ωq| “ 0

(2). D X˚ P R, Ω˚ P CzR : HrDX˚PspΩ˚q “ HrDX˚PspΩ˚q “
4πp
q

or

D X˚,Ω˚ P R : HrDX˚PspΩ˚q “
4πp
q

and DX˚PpΩ˚q “ 0.

(3). dpΓ, 4πp{qq “ 0, where Srf sptq “ Hrf sptq ´ if ptq and

ΓX :“ tSrDXPp¨qsptq, t P Ru Y t0u,
˝

ΓX “ tz P C|z enclosed by ΓX u,

Γ :“
Ť

XPR

˝

ΓX .
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If there are unstable wavenumbers,

rhpX˚, ω˚q “ 1 for some X0 P R, Reω˚ ą 0

they give rise to unstable modes. These seem to successfully
capture some inherent scalings for Rogue waves.

[A., Athanassoulis, Sapsis, JOEME (2017)]
Scalings of unstable modes

[Dematteis, Grafke, Vanden-Eijden, PNAS (2018)]
Monte Carlo + Large Deviations Theory
for fully Nonlinear simulations of mNLS

ñ Timescales ñ Unstable spectra

"

in real life?
in the Alber equation?
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Crossing seas

Crossing seas

NLS system for crossing seas [Gramstad & Trulsen, Physics of Fluids, 2011]

i
d

dt
rvA
´

ωA

8k4
A

´

k2
AxB

2
x ´ 2k2

AxB
2
y

¯

rvA
´

´

k3
A|rv

A
|
2
` E |rvB

|
2
¯

rvA
“ 0,

i
d

dt
rvB
´

ωA

8k4
B

´

pk2
Bx ´ 2k2

By qB
2
x ` pk

2
By ´ 2k2

BxqB
2
y ` 6kBxkByBxBy

¯

rvB
´

´

´

k3
B |rv

B
|
2
` E |rvA

|
2
¯

rvB
“ 0,

7 / 8



Crossing seas

Crossing seas

i
d

dt
rvA
´

ωA

8k4
A

´

k2
AxB

2
x ´ 2k2

AxB
2
y

¯

rvA
´

´

k3
A|rv

A
|
2
` E |rvB

|
2
¯

rvA
“ 0,

i
d

dt
rvB
´

ωA

8k4
B

´

pk2
Bx ´ 2k2

By qB
2
x ` pk

2
By ´ 2k2

BxqB
2
y ` 6kBxkByBxBy

¯

rvB
´

´

´

k3
B |rv

B
|
2
` E |rvA

|
2
¯

rvB
“ 0,

Leads to an Alber system with the following

Penrose condition:

DP P R2, ω P C such that

inf
Reωą0

XPR2

ˇ

ˇ

ˇ
p1´ k3

Ah
A
pX, ωqqp1´ k3

Bh
B
pX, ωqq ´ E 2hA

pX, ωqhB
pX, ωq

ˇ

ˇ

ˇ
“ κ ą 0

where

hA
pX, ωq „ Hr

ż

K

DXP
A
sp

ω

MpXq
q, similarly for hB

pX, ωq

8 / 8


	Introduction
	Ocean waves and the Alber equation
	Onset of MI
	Appendix

