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Introduction
°

Envelope equation

NLS & Ocean waves

@ Gravity waves can be represented by an envelope,

n(x, t) = Re [u(x, el 09| wo = \/gho.

o Asymptotically, the envelope satisfies the focusing cubic NLS
iOpu + gAu + g|u|2u —0,
where p = p(ko) » 1, g = q(ko) « 1.

[Mei, ‘Theory and applications of ocean surface waves’, World
Scientific]

)

20



Introduction
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The classical Ml

Modulation instability (MI)

The plane wave
g a2
uo(x, t) = Ae'2*"

is an exact solution of
i0ru + gAu + g|u|2u =0.
If we look for a solution of the form
u(x, t) = uo(x, t)(1 + o(x, t)),
we get
uo (i(st cPAs+ IR 18 + I+ 85+ Ia%)5P(1 + 5)) —o.

2 2 2 2

If “0 « 1" we can linearise,

. P q 42 =N _iCc(x—27Q(¢)t) 2 _ (P 2 2 5q 42
i+ EAG+ I G450 = - , Q _(4 ) << 2pA).
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The classical Ml

Modulation instability (MI): Linear implications

If ug is a plane wave solution of
iOpu + gAu + g|u|2u —0,

then a perturbation § will tend to grow exponentially in time,

according to A A
S(k,t) ~ &(k,0)e8k)E,
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The classical Ml

Modulation instability (MI): Nonlinear stage

Computation inspired by
[Biondini & Mantzavinos 2016; Biondini, Mantzavinos & Trillo 2018]
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The classical Ml

Modulation instability (MI): Nonlinear stage

20 40 60 80

With rough initial inhomogeneity (white noise x Gaussian envelope),
basically same pattern
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Rogue Waves

Rogue Waves: a turning point in the 2000s

@ MV Derbyshire, largest British ship to be lost at sea, in 1980. In
1994-1998 an extensive underwater survey was made. In 2000 the
leading explanation that emerged was that it was sank by a single
wave [Faulkner, SNAME 1999].

@ Draupner wave (Jan. 1 1995), 26m trough to peak.
10,000-40,000 year wave by standard engineering
computations
cf. [Rainey & Colman 2014]
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Rogue Waves

Rogue Waves and the Ml

@ Does the MI play a significant role in Rogue Waves?
@ Fundamental issue: realistic sea states are not plane waves.

@ Can we have a “generalised MI” actually applicable to
realistic sea states?
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Ocean waves and the Alber equation
°

Statistical description of sea states

Typical sea states

@ Sea states are (locally) stationary and homogeneous random
processes characterised by their power spectrum,

E [n(x, t)n(x, t)] = T(x—x) +o(1),

Fy—ilF(y)] = P(k)

[Komen et al., ‘Dynamics and modelling of ocean waves’, CUP;
Ochi, ‘Ocean waves: the stochastic approach’, CUP]

@ This leads to a representation of the form

n(x,t) = Y. Zi\/P(kj)dkisin(kix — wit + ¢7),
J

where Z; are normal iid RV and ¢; are U(0, 27) iid RV.

These power spectra form the vast majority of data on ocean waves.



Ocean waves and the Alber equation
.

The Alber equation: idea

The Alber equation

@ Idea: investigate perturbations on

n(x,t) = > Zin/P(k;)dkj sin(kjx — wit + ),
7

assuming NLS dynamics and taking ensemble averages.

@ |. E. Alber, Proceedings of the Royal Society A (1978)
~ 240 citations in Google scholar

This talk is based on:

@ A. Athanassoulis, G. Athanassoulis and T. Sapsis,
Journal of Ocean Engineering and Marine Energy (2017)

@ A. Athanassoulis, OMAE 2018

@ A. Athanassoulis, G. Athanassoulis, M. Ptashnyk and T. Sapsis,
Kinetic and Related Models (2020)

@ A. Athanassoulis and O. Gramstad, Fluids (2021)

10/20



Ocean waves and the Alber equation
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The Alber equation: state of the art

Key results

Consider a background solution 79 with autocorrelation

Elns(x, t)np(x', t)] = T(x — x'),
and an inhomogeneity ¢ such that

E[(n6(x,0) + 80(x)) (n6(x",0) + do(x"))] = F(x — x") + ep(x, X, 0).

Then p(x,x’, t) evolves in time under

i@tp—i-g (D = AL) p+q[T(x = x') +eplx,x)] [p(x,x) — p(x',x")] =0

e (In)stability condition on I'(x — x") < P(k) [Alber, 1978, PRSA]
e Stable case is Landau damping [AAPS, 2020, KRM]

e Extrapolating from nonlinear LD results, nonlinear stability is only
expected if ||dg[ns « 1.

e In the limit P(k) — Cd(k — ko) we recover the classical MI.

More details here. 11/20


https://www.youtube.com/watch?v=0LI5dwE4gQQ&t=22s

Ocean waves and the Alber equation
oe

The Alber equation: state of the art

The Landau-Alber bifurcation

@ Stable case: Landau damping

3k >0 inf |1 — A[P](X,w)| = k.
X,Rew>0

and
p does not grow under linearised dynamics

@ Unstable case: Modulation instability

IXe IRewy =0 A[P](Xy,ws) = 1

and
p grows exponentially under linearised dynamics

First constructive way to check stability: [AAPS, 2020, KRM]

12/20



Ocean waves and the Alber equation
°

Implications

Two kinds of functions

Eln(x, t)Tl(X,, t)] =T(x— Xl) + ep(x, X, t)

@ Solution is broken down to
spatially homogeneous part + localised part

@ Gen. Modulation instability < Growth of the localised part
Landau damping < Dispersion of the localised part

@ Fine print:

* timescale & nonlinear evolution
x smallness of initial localised perturbation for NL LD

13 /20



Ocean waves and the Alber equation
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Metocean data

The JONSWAP parametric spectrum

= O o5 expl—(1—yh/k)? /26%] _ _ ) 007, k< ko,
Pk) ety o 0= 0kem) =10 000 k> k,

a : power, Hs

~ : peakedness, narrowbandedness
14 /20



Ocean waves and the Alber equation
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Metocean data

Stability region for JONSWAP [AAPS, 2020, KRM]

Unstable spectra: ~ 0.2% of the time.

---- [Ribal2013]
1074 -~ [Gramstad2017]
* * N. Atlantic Scat. Diagr.
* = stable
* unstable
*
1075" 1 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Y

North Atlantic Scatter Diagram data from [DNV-GL, DNVGL-RP-C205:

Environmental Conditions and Environmental Loads, Tech. Rep., August 2017] e



Onset of Ml

Quantifying the onset of MI in realistic sea states

o Phase-resolved, fully nonlinear simulations can put the
predictions of Alber equation to the test.

@ Size of events due to MI now quantifiable
= Not all extreme events are due to Ml

5 100 L A
£ T PORL
F10° tmettel
- L]
2 . Fd .
10 10 1073 1072

Rogue wave probability

[Janssen, (2003); A. & Gramstad, Fluids (2021)]
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Onset of Ml

What is MI? What is LD? Follow the theory.

Consider the “background solution” of
iuy + gAu + g\u|2u =0, u(x,0) = up(x) = ZAjez’Ti[kfX+¢f]
and the perturbed solution
vy + gAv + g|v\2v =0, v(x,0) = up(x) + do(x)

where &g is a small inhomogeneity.
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Onset of Ml

s=1
25 3 3.5 4 45

Amplification factor of §

350
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Onset of Ml

Beyond LD

@ In the “stable” case we expect LD for the linearised problem

[[80| s
K/Z

@ Nonlinear LD typically requires small enough

3
10 o

9 = 10 5

8 — Inhomogeneity L norm —— Inhomogeneity L norm

7 ~— Inhomogeneity L* norm —— Inhomogeneity L* norm

s Inhomogeneity L™ norm Inhomogeneity L norm

5

4

@ k scales roughly with how far the spectrum is from being unstable

@ Hence LD does not apply to spectra close to instability
Still, inhomogeneity plateaus to something small



Onset of Ml

Conclusions

@ Deep in the unstable regime, Ml inevitably yield large events
@ Not all large events are due to MI — especially for stable spectra

@ More extensive Monte Carlo & crossing seas extensions

warranted
08
o
04 4 t = 20 min = Monte Carlo
- 5| — DT
i S P U
0 o] o Shabalin
o2 4 m,—s3m H=85m
o5

[Dematteis, Grafke, Vanden-Eijden, PNAS (2018)]
Monte Carlo + Large Deviations Theory
[A., Athanassoulis, Sapsis, JOEME (2017)] for fully Nonlinear simulations of mNLS
Scalings of unstable modes

Thank you for your attention!

20/20



Details of the computation

Initial data wp(x) :

w(x) = 2 \[Pllg)bky - et

P(kj)dk; : average power associated with k € (kj, kjt1)

Z; : randomised coefficients %(/\/’(O7 1) +iN(0,1))

Industry common practice: average over ~ 500 realisations ...

Here: Keep same realisation of Z;, vary o, 7.

Here: a handful of realisations so far



Working with the (in)stability condition

How do you check

3k >0 inf |1 — h(X,w)| > K?

X,Rew>0

More or less through

IXy IRews =0 h(Xy,wy) =1
A nonlinear system of two equations in three unknowns,
Re (%(X*,a* + ib*)) —1 and Im (E(X*7a* + ib*)> -0,

where of course wy = ay + iby.



Denote by H[f](t) the Hilbert transform,

H[f](¢t) := p.v.l de.

s t—Xx

Theorem [A., Athanassoulis, Ptashnyk & Sapsis, KRM (2020)]

The following are equivalent:
(1). inf [1—h(X,w)| =0
Re w>0,

XeR
() IX«€R, QueC\R : H[Dx,P](Qx) = H[Dx, P](Qx) = %22
or
I Xs, 2 €R 1 H[Dx, P](Qs) = 22 and Dx, P(Q2x) = 0.

(3). d(T,4np/q) = 0, where S[f](t) = H[f](t) — if(t) and

Mx := {S[DxP(-)](t), t € R} u {0}, FX = {z € C|z enclosed by Ix},




h(r)
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If there are unstable wavenumbers,

~

h(X4,wx) =1  for some Xp € R, Rew, >0

they give rise to unstable modes. These seem to successfully
capture some inherent scalings for Rogue waves.

= Monte Carlo

[Dematteis, Grafke, Vanden-Eijden, PNAS (2018)]
Monte Carlo + Large Deviations Theory
[A., Athanassoulis, Sapsis, JOEME (2017)] for fully Nonlinear simulations of mNLS
Scalings of unstable modes

in real life?

= Timescales = Unstable spectra . .
P { in the Alber equation?

6/8



Crossing seas

Crossing seas

NLS system for crossing seas [Gramstad & Trulsen, Physics of Fluids, 2011]

-1~A 2 2 2\ ~A 31~A2 ~B12\ ~A
iV 8k4 (kAXa 2kAX8y)v —(kA|v ?+ Ev |)v —0,
iLys e (ke — 268,22 + (KB, — 2K3)35 + Bkecka, 00 ) 77

B

— (KIV°1 + EI7P) v° = o,

E/\/kaP Tkl




Crossing seas

Crossing seas

i%VA - ;Tﬁ(kixai - 2k§.xa§) - (k,?;WA\z + E[7°?) v =0,
A

.d..p wa 2 2\ A2 2 2\ A2 ~B
i ((kBX — 203,)02 + (KB, — 2kE)O2 + 6kBXkByaxay) v
— (K317 + E*1) 7° = o,

Leads to an Alber system with the following

Penrose condition:

IP € R?, w e C such that

inf ’(1 — KEHAX,w)) (1 — kERE (X, w)) — E2hA(X,w)hB(X,w)’ — k>0

Re w>0
XeR?
where
K (X, w) ~ H[L DXPA](MLX)), similarly for h? (X, w)
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