Uniqueness of Regular Exact Borel Subalgebras

Anna Rodriguez Rasmussen

Uppsala University

Topology, Representation Theory and Higher Structures Gaelic College Sabhal Mòr Ostaig 11th of June 2024

Introduction

- g f.d. complex semisimple Lie algebra.
- ► Category *O* is the category of certain representations of g.
- Category O is a highest weight category, the standard objects are the duals of the Verma modules.
- ightharpoonup Blocks of category $\mathcal O$ are module categories of quasi-hereditary algebras, the standard modules are the Verma modules.

Quasi-Hereditary Algebras

Definition

[Cline, Parshall, Scott]

- A finite-dimensional algebra.
- ► Sim(A) isomorphism classes of simple A-modules.
- $ightharpoonup \leq$ partial order on Sim(A).
- ▶ Projective covers P(L) for $L \in Sim(A)$.

Then the standard modules are defined as

$$\Delta(L) := P(L) / \sum_{L' \nleq L, \varphi : P(L') \to P(L)} \operatorname{im}(\varphi), \ L \in \operatorname{Sim}(A).$$

 $F(\Delta)$ is the category of standardly filtered modules. A is called **quasi-hereditary** if $\operatorname{End}_A(\Delta(L)) \cong \mathsf{k}$ for all $L \in \operatorname{Sim}(A)$ and $A \in \mathsf{F}(\Delta)$.

Example: $\mathcal{O}_0(\mathfrak{sl}_2)$

Let Q be the quiver

$$1 \stackrel{\alpha}{\underset{\beta}{\longleftarrow}} 2$$

and let $A := k Q/(\alpha \beta)$.

$$P(L_1) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; \Delta(L_1) = (1) = L_1; P(L_2) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \Delta(L_2).$$

So
$$P(L_1)$$
 has a Δ -filtration $P(L_1) = \begin{pmatrix} \Delta(L_1) \\ \Delta(L_2) \end{pmatrix}$ and $P(L_2) = \Delta(L_2)$, and $A \cong P(L_1) \oplus P(L_2)$.

Borel Subalgebras

- ▶ g has a Borel subalgebra b.
- Verma modules are simple modules induced along the Borel subalgebra:

$$V(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}.$$

Exact Borel Subalgebras

Definition

[Koenig] An **exact Borel subalgebra** B is a subalgebra of a quasi-hereditary algebra A such that

- ▶ $A \otimes_B$ is exact.
- ► There is a bijection φ : Sim(B) \rightarrow Sim(A) such that $A \otimes_B L \cong \Delta(\varphi(L))$ for all $L \in$ Sim(B).
- ▶ *B* is directed, i.e. $\operatorname{Ext}_B^1(L, L') \neq (0)$ implies $\varphi(L) < \varphi(L')$.

B is called regular if for all $L, L' \in Sim(B)$ the map

$$\operatorname{Ext}_{B}^{n}(L, L') \to \operatorname{Ext}_{A}^{n}(\Delta(L), \Delta(L')), [f] \mapsto [A \otimes_{B} f]$$

is an isomorphism for $n \ge 1$.

Example

In the example where Q is

$$1 \stackrel{\alpha}{\underset{\beta}{\longrightarrow}} 2$$

and $A := k Q/(\alpha \beta)$, the subalgebra given by the quiver

$$1 \xrightarrow{\alpha} 2$$

is a regular exact Borel subalgebra.

Existence of Regular Exact Borel Subalgebras

In general, a quasi-hereditary algebra does not have an exact Borel subalgebra!

Theorem

[Koenig, Külshammer, Ovsienko] Let (A, \leq_A) be a quasi-hereditary algebra. Then there is a Morita equivalent quasi-hereditary algebra (R, \leq_R) which has a basic regular exact Borel subalgebra B.

Uniqueness of Regular Exact Borel Subalgebras

The Borel subalgebra $\mathfrak b$ of a Lie algebra $\mathfrak g$ is unique up to inner automorphism.

Theorem

[Külshammer, Miemietz] Let A be a quasi-hereditary algebra and suppose B and B' are basic regular exact Borel subalgebras of A. Then there is an automorphism $\varphi:A\to A$ such that $\varphi(B')=B$.

Related results obtained in [Conde].

Q: Can we choose φ to be an inner automorphism? A: Yes! We can even do this in a slightly more general setting.

Setup

- k algebraically closed field.
- ► A finite-dimensional algebra over k.
- ► $M_1, ..., M_n$ pairwise non-isomorphic indecomposable modules in mod A, $M := \bigoplus_{i=1}^n M_i$.
- ► F(M) subcategory of mod A consisting of modules admitting a filtration by M_1, \ldots, M_n .

Bound Quivers

Definition

[Külshammer] A **bound quiver** for M_1, \ldots, M_n is a basic subalgebra B of A s.t.

- ▶ $A \otimes_B : \text{mod } B \to \text{mod } A \text{ is exact.}$
- $\blacktriangleright \mathsf{Sim}(B) = \{L_1^B, \dots, L_n^B\}$
- $A \otimes_B L_i^B \cong M_i.$
- For $k \ge 1$, $1 \le i, j \le n$

$$\operatorname{Ext}_{B}^{k}(L_{i}^{B}, L_{j}^{B}) \to \operatorname{Ext}_{A}^{k}(M_{i}, M_{j}), [f] \mapsto [\operatorname{id}_{A} \otimes f]$$

is an isomorphism.

A-infinity Algebras

Definition

An **A-infinity algebra** over k is a graded vector space $\mathcal A$ together with maps

$$m_n: \mathcal{A}^{\otimes_k n} \to \mathcal{A}$$

for all $n \geq 1$, homogeneous of degree 2-n, such that for all $n \in \mathbb{N}$

$$\sum_{r+s+t=n,s\geq 1} (-1)^{rs+t} m_n (1^{\otimes r} \otimes m_s \otimes 1^{\otimes t}) = 0.$$

An **A-infinity category** is a generalization of this to multiple objects.

Examples of A-infinity Algebras

- ▶ A f.d. k-algebra is an A-infinity algebra with $m_n = 0$ for $n \neq 2$. Similarly, a category is an A-infinity category with $m_n = 0$ for $n \neq 2$.
- A dg-algebra \mathcal{A} over k is an A-infinity algebra with $m_n=0$ for $n\neq 1,2$. Similarly, a dg-category is an A-infinity category with $m_n=0$ for $n\neq 2$.
- ▶ If \mathcal{A} is an A-infinity algebra with $m_1=0$, then (\mathcal{A},m_2) is a graded algebra and (\mathcal{A}_0,m_2) is an algebra. Similarly, if \mathcal{A} is an A-infinity category with $m_1=0$, then (\mathcal{A},m_2) is a graded category and (\mathcal{A}_0,m_2) is a usual category.

A-infinity homomorphism

Definition

An **A-infinity homomorphism** $f: A \to B$ is a family $f = (f_n)_n$ of k-linear maps

$$f_n: \mathcal{A}^{\otimes n} \to \mathcal{B}$$

homogeneous of degree 1-n such that for all $n\in\mathbb{N}$

$$\sum_{k=1}^{n} \sum_{j_1+\dots+j_k=n} (-1)^{?} m_k (f_{j_1} \otimes \dots \otimes f_{j_n})$$

$$= \sum_{r+s+t=n,s>1} (-1)^{?} f_{r+t+1} (1^{\otimes r} \otimes m_s \otimes 1^{\otimes t}).$$

f is called **strict** if $f_n = 0$ for n > 1.

Unitality

Definition

An A-infinity algebra $\mathcal A$ over k is called strictly unital over a k-algebra L if there is a strict A-infinity homomorphism $f=(f_n)_n:L\to\mathcal A$ such that

$$m_n(a_1\otimes\cdots\otimes a_n)=0$$

for all $n \neq 2$, $a_1, \ldots a_n \in \mathcal{A}$ s.t. $a_i \in f_1(L)$ for some $1 \leq i \leq n$, and

$$m_2(f_1(1_L)\otimes a)=a=m_2(f_1(1_L)\otimes a)$$

for all $a \in \mathcal{A}$.

In our case: $L = k^n$.

A-infinity structures on Ext-algebras

Theorem

(Kadeishvili) If \mathcal{A} is an A-infinity algebra strictly unital over some semisimple subalgebra L, then $H^*(\mathcal{A})$ has the structure of an A-infinity algebra strictly unital over L, with $m_1^{H^*(\mathcal{A})} = 0$ and $m_2^{H^*(\mathcal{A})}$ being induced by $m_2^{\mathcal{A}}$; and there is a strictly unital A-infinity quasi-isomorphism $(f_n)_n: H^*(\mathcal{A}) \to \mathcal{A}$ such that $H^*(f_1) = \mathrm{id}_{H^*(\mathcal{A})}$.

Remark

This also works for A-infinity categories.

Corollary

Let M_1, \ldots, M_n be a collection of objects in mod A, and $M := \bigoplus_{i=1}^n M_n$. Then $\operatorname{Ext}_A^*(M, M)$ has the structure of an A-infinity algebra strictly unital over k^n .

Twisted Module Category

Definition

[Bondal, Kapranov] Let \mathcal{A} be an A-infinity algebra strictly unital over \mathcal{L} .

The **twisted module category** twmod_L(A) is given by:

▶ Objects: Pairs (X, w_X) ; X L-module, $w_X \in A_1 \otimes_{L \otimes L^{op}} \operatorname{End}_{k}(X)$ s.t.

$$\sum_{n=1}^{\infty} (-1)^{?} m_n(w_X^{\otimes n}) = 0$$

- ▶ Morphism spaces: $A \otimes_{L \otimes L^{op}} Hom_k(X, Y)$.
- ▶ Higher multiplications in twmod_L(\mathcal{A}): Higher multiplications of \mathcal{A} twisted by w_X .

Twisted Module Categories and Filtered Modules

Remark

In particular $H^*(\operatorname{twmod}_L(\mathcal{A}))$ obtains the structure of an A-infinity category with $m_1=0$. Thus, $H^0(\operatorname{twmod}_L(\mathcal{A}))$ viewed with composition given by m_2 has the structure of a usual category.

Lemma

[Seidel] This extends to a functor $H^0(\mathsf{twmod}_L)$ from the category of A-infinity algebras an homomorphisms strictly unital over L to Cat

Theorem

[Keller] There is an equivalence

$$R_M: H^0(\mathsf{twmod}_L(\mathsf{Ext}^*_A(M,M))) \cong \mathsf{F}(M).$$

Back to Bound Quivers

Let B be a bound quiver for (A, M). Then we obtain an A-infinity homomorphism

$$f^B : \operatorname{\mathsf{Ext}}^*_B(L^B, L^B) o \operatorname{\mathsf{Ext}}^*_A(M, M)$$

such that f_1^B is an isomorphisms in degree > 0. Moreover, we have equivalences

$$R_{L^B}: H^0(\mathsf{twmod}_L(\mathsf{Ext}_B^*(L^B, L^B))) \to \mathsf{F}(L^B) = \mathsf{mod}\, B$$

and

$$R_M: H^0(\mathsf{twmod}_L(\mathsf{Ext}^*_A(M,M))) \to \mathsf{F}(M) \subseteq \mathsf{mod}\, A.$$

A Commutative Diagram

Proposition

[RR] The diagram

$$H^0(\operatorname{twmod}_L(\operatorname{Ext}_B^*(L^B, L^B))) \xrightarrow{R_{L^B}} \operatorname{mod} B$$
 $H^0(\operatorname{twmod}_L(f^B)) \downarrow \qquad \qquad \downarrow A \otimes_B -$
 $H^0(\operatorname{twmod}_L(\operatorname{Ext}_A^*(M, M))) \xrightarrow{R_M} \operatorname{F}(M)$

commutes up to natural isomorphism.

Proposition

[RR] Let B and B' be bound quivers for (A, M). Then, there is A-infinity isomorphism

$$h: \operatorname{Ext}_{B'}^*(L^{B'}, L^{B'}) \to \operatorname{Ext}_B^*(L^B, L^B)$$

such that the diagram

commutes.

Corollary

There is an equivalence $H: mod B' \rightarrow mod B$ such that the diagram

commutes up to natural isomorphism.

The Main Theorem

Theorem

[RR] Let B and B' be bound quivers for (A, M). Then there is $a \in A^{\times}$ such that $B' = aBa^{-1}$.

Proof Sketch:

B' basic projective generator in mod B'

 $\Rightarrow H(B')$ basic projective generator in mod B

 $\Leftrightarrow H(B') \cong B$.

Changing H on one object, we can assume H(B') = B.

Denote by $\alpha: H' \to (A \otimes_B -) \circ H$ the natural isomorphism.

Then $\alpha_{B'}: A \otimes_{B'} B' \to A \otimes_B B$ isomorphism.

Obtain a commutative diagram

$$\begin{array}{ccc} \operatorname{End}_{B'}(B') \xrightarrow{\operatorname{id}_A \otimes -} \operatorname{End}_A(A \otimes_{B'} B') \xrightarrow{\rho_{e'}} \operatorname{End}_A(A) \\ f \mapsto H(f) \Big\downarrow & \rho_{\alpha_{B'}} \Big\downarrow & \rho_{\beta} \Big\downarrow \\ \operatorname{End}_B(B) \xrightarrow{\operatorname{id}_A \otimes -} \operatorname{End}_A(A \otimes_B B) \xrightarrow{\rho_e} \operatorname{End}_A(A) \end{array}$$

where

$$e: A \otimes_B B \rightarrow A, a \otimes b \mapsto ab$$

 $e': A \otimes_{B'} B' \rightarrow A, a \otimes b' \mapsto ab'$

and ρ denotes conjugation. $\beta \in \operatorname{End}_A(A)^{\times} \Rightarrow \beta = r_a$, $a \in A^{\times}$.

$$(B')^{\operatorname{op}} \xrightarrow{\iota_{B'}} \operatorname{End}_{A}(A \otimes_{B'} B') \longrightarrow \operatorname{End}_{A}(A) \xrightarrow{\rho_{r_{a}}} A$$

$$\operatorname{End}_{B}(B) \longrightarrow \operatorname{End}_{A}(A \otimes_{B} B) \longrightarrow \operatorname{End}_{A}(A) \xrightarrow{\rho_{a-1}} A$$

$$\uparrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$(B)^{\operatorname{op}} \xrightarrow{\iota_{B}} \operatorname{End}_{A}(A) \xrightarrow{\rho_{a}} A$$

Thank you!

Bibliography

Cline, E., Parshall, B., and Scott, L.. "Finite dimensional algebras and highest weight categories". Journal für die reine und angewandte Mathematik 391 (1988): 85-99.

Koenig, S., Külshammer, J., Ovsienko, S.. "Quasi-hereditary algebras, exact Borel subalgebras, A_{∞} -categories and boxes". Advances in Mathematics 262 (2014): 546-592.

Külshammer, J., Miemietz, V.. "Uniqueness of Exact Borel Subalgebras and Bocses". Memoirs of the American Mathematical Society (2023).

Koenig, S.. "Exact Borel Subalgebras of Quasi-Hereditary Algebras I". Mathematische Zeitschrift 220 (1995): 399-426.

Külshammer, J.. "Towards Bound Quivers for Exact Categories". Preprint, Survey for Proceedings of ICRA 2022.

Seidel, P.. "Fukaya Categories and Picard-Lefschetz Theory". Zürich Lectures in Advanced Mathematics, European Mathematical Society (2008).

Keller, B.. "Introduction to A-infinity Algebras and Modules". Homology, Homotopy and Applications 3 (2001): 1-35.

Bondal, A., Kapranov, M.. "Enhanced Triangulated Categories". Mat. Sb. 181 (1990): 93-107.

Conde, T.. "All Quasihereditary Algebras with a Regular Exact Borel Subalgebra". Advances in Mathematics 384 (2021).

Rodriguez Rasmussen, A.. "Uniqueness up to Inner Automorphism of Regular Exact Borel Subalgebras". Preprint.