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Main Takeaway

The accuracy of numerical simulations of SDEs does not necessarily depend on
the regularity of the coefficients
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Strong Convergence

Consider stochastic numerical approximations X 1,X 2, ... converging to some
object of interest X . In this presentation we are interested in strong
convergence, in particular convergence in Lp. Specifically, X n converges to X
in Lp if

(E |X n − X |p)1/p → 0 (1)

as n → ∞. This is pathwise convergence. We require that for large n

|X n (𝜔) − X (𝜔) |, (2)

is ‘small’ for ‘most’ 𝜔 ∈ Ω. We are interested in strong convergence because:

strong convergence informs more about qualitative properties of dynamics
(for instance, proof of strong solutions in Gyöngy, Krylov 1996)

allows us to control difference between L(X n) and L(X ) in some metrics
(Wasserstein distance)

multi-level monte carlo: one may achieve superior bounds by writing

f (X n) = f (X 1) +
n−1∑︁
i=1

f (X i+1) − f (X i ), (3)

but generally requires strong convergence of X n.
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What makes it difficult to simulate an SDE?

What properties of
dXt = b(Xt )dt + 𝜎(Xt )dWt , (4)

mean that the Euler scheme approximation X n
t given for t ∈ [mn ,

m+1
n ] as

X n
t = X n

m/n + (t −m/n)b(X n
m/n) + 𝜎(X n

m/n) (Wt −Wm/n). (5)

is accurate? Likely to be more accurate if the dynamics do not depend ‘too
sensitively’ on the space variable - i.e. if there is some regularity to b and 𝜎
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What makes it difficult to simulate an SDE?

Indeed, if b and 𝜎 obey the Lipschitz assumption

|b(x) − b(y ) | ≤ L|x − y |, (6)

|𝜎(x) − 𝜎(y ) | ≤ L|x − y |, (7)

one has the following (classical) result

Theorem
Suppose b, 𝜎 are Lipschitz. Then for every p,T > 0 there exists c > 0 such that

(E sup
t∈[0,T ]

|X n
t − Xt |p)1/p ≤ cn−1/2. (8)

Now suppose ∇b exists and is also a Lipschitz function, and 𝜎 is constant. Then

(E sup
t∈[0,T ]

|X n
t − Xt |p)1/p ≤ cn−1. (9)

However the constants c > 0 depend exponentially on the Lipschitz constant
L > 0.
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What makes it difficult to simulate an SDE?

Given this, one expects that the Lp error of the Euler scheme would explode for
the SDE

dXt = sin(𝛼Xt )dt + dWt , (10)

as 𝛼 → ∞.
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However, recent work has shown that this is not true at all.

Theorem (Dareiotis, Gerencsér, Lê 2022, Theorem 1.2)

Consider the SDE
dXt = b(Xt )dt + 𝜎(Xt )dWt , (11)

on Rd , with diffusion 𝜎 that is bounded and twice differentiable with bounded
derivatives 𝜎𝜎T ⪰ 𝜆Id , and the drift b is bounded and measurable. Then for
every 𝛿 > 0 and p > 0 there exists c > 0 such that the Euler scheme X n satisfies

(E sup
t∈[0,T ]

|X n
t − Xt |p)1/p ≤ cn𝛿−1/2. (12)

Furthermore the constant c = c (d , 𝜎, supx∈Rd |b(x) |).

This result therefore is entirely independent of the regularity of b. In
particular, this means the Euler scheme converges even for (very) discontinuous
drift coefficients b. One could take for instance

b(x) := sign(sin(𝛼x)), (13)

for 𝛼 > 0 very large.
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Regularisation by Noise

The key thing here is that the noise has a regularising effect. To this end, for b
measurable and bounded, lets look at how one bounds

E [b(Wt ) − b(Wm/n)] (14)

where Wt is a Wiener martingale and t ∈ [m/n, (m + 1)/n]
let ps (x) = 1√

2𝜋s
e

−x2
2s be the density of Ws . Then

Eb(Ws ) =
∫
Rd

ps (x)b(x)dx . (15)

since ps (x) is differentiable with respect to s, one can easily show

𝜕sEb(Ws ) ≤ cs−1. (16)

then using the fundamental theorem of calculus one has

E (b(Wt ) − b(Wm/n)) =
∫ t

m/n
𝜕sEb(Ws ) ≤ cn−1 (m/n)−1. (17)
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The study of numerical methods under low regularity assumptions is a very active
area of research. In particular we highlight the following additional results

the result presented prior can be sharpened under some conditions when b is
slightly more regular (but possibly still discontinuous), see (Dareiotis,
Gerencsér, Lê 2022)

the Euler scheme converges at rate 1/2 in Lp when the drift coefficient is
‘piecewise regular’, and otherwise Lipschitz, see (Müller-Gronbach,
Yaroslavtseva 2018). This result uses slightly different techniques but allows
for growth.

for discontinuous coefficients no numerical method for SDEs can converge
better than rate 3/4 in Lp, see (Müller-Gronbach, Yaroslavtseva 2020) and
(Ellinger 2024)
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Counterpoint: Bad Convergence

For certain SDEs the Euler scheme (and other methods) can converge extremely
badly

in general, for X n (Wt1 , ...,Wtn ) approximating SDE solution Xt one has

E |X n (Wt1 , ...,Wtn ) − Xt | ≥ cn−1. (18)

and for general non-constant diffusion coefficient (Thomas Muller-Gronbach
2002)

E |X n (Wt1 , ...,Wtn ) − Xt | ≥ cn−1/2. (19)

for d ≥ 2 one can construct an SDE with bounded coefficients such that for
every 𝛿 > 0 (Jentzen, Müller-Gronbach, Yaroslavtseva 2015)

E |X n (Wt1 , ...,Wtn ) − Xt | ≥ cn−𝛿 . (20)

the Cox-Ingersoll-Ross Process

dXt = a − bXtdt + r
√︁
XtdWt , (21)

cannot be approximated by any method at rate better than 2a/r2 (Hefter,
Jentzen 2019)
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Relevance to Sampling Algorithms: Proximal Methods

Say one wishes to sample from a measure 𝜋 on Rd . For many sampling
algorithms, theoretical bounds depend on the regularity of the Lebesgue
density of 𝜋, often given as

𝜋 ∼ e−U , (22)

for some U : Rd → R. Theoretical bounds for sampling from U often depend on
the Lipschitz constant of ∇U. What if ∇U is irregular? One may use proximal
methods. One targets a new density given as

𝜋𝜆 ∼ e−U𝜆 , (23)

such that

𝜋𝜆 is close to 𝜋 for 𝜆 small

∇U𝜆 is regular (has small Lipschitz constant) for 𝜆 large

However calculating U𝜆 (x) for any x ∈ Rd involves solving an optimisation
problem.
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using proximal methods one recovers theoretical convergence of the
sampling algorithm

however one also incurs additional error and computational cost.

using ideas from numerical results discussed earlier, we prove theoretical
convergence of a method with irregular ∇U without proximal methods

the technical challenge here is that we wish to show uniform in time bounds
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Convergence of ULA for Discontinuous Gradients

We consider the Unadjusted Langevin Algorithm (ULA), also known as the
stochastic Langevin algorithm, with stepsize 𝛾 > 0, i.e.

xn+1 = xn − 𝛾∇U (xn) +
√
𝛾zn+1. (24)

This is the Euler scheme discretisation of a certain SDE that converges in law
to the target 𝜋

Theorem (Johnston, Sabanis, 2024)

Suppose U : Rd → R is 𝜇-strongly convex, differentiable almost everywhere, and
∇U obeys a linear growth bound. Then one has

Wp (𝜋𝛽 ,L(X 𝛾
t )) ≤ Wp (𝜉, 𝜋𝛽)e−𝜇t + cd1/2𝛾1/4. (25)

Furthermore, if ∇U is discontinuous only on C 3 compact hypersurfaces, and
Lipschitz otherwise one has

Wp (𝜋𝛽 ,L(X 𝛾
t )) ≤ Wp (𝜉, 𝜋𝛽)e−𝜇t + cd3/2𝛾1/2. (26)

This therefore shows that one does not neccesarily have to smooth bad gradients.
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To recap:

the performance of numerical methods for SDE does not necessarily depend
on the regularity (i.e. Lipschitz constant) of coefficients

in particular a wide range of positive and negative results have been obtained
for numerical methods for discontinuous coefficients

these new methodologies can be applied to the performance of sampling
algorithms

many open problems in numerics and algorithms - when is convergence
retained for ‘bad’ gradients? When is smoothing (i.e. the use of proximal
methods) necessary? What about methods not based on the Euler scheme?
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Thank You!
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