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Symplectic Structure Symplectic Homology Uniruled Subvarieties Cylindrical Affine Variety Remarks

Underlying Symplectic Structure

We consider certain noncompact symplectic manifolds.

A Liouville domain

= A compact symplectic manifold M with boundary ∂M with
• exact symplectic 2-from: ω = dα.
• Liouville vector field X :

• ιXdαM = αM ⇐⇒ LXdα = dα.
• X is transversely pointing outwards along ∂M.
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Completion of a Liouville Domain

Completion of Liouville domain M̂
= Half-infinite cylinder attached to ∂M to complete the Liouville
flow.

M̂ :=
(
M ∪ (∂M × [0,∞)), d(erα)

)
.

D
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Example of Liouville Domain

Affine Variety M
= A set of solution of system of polynomial equations in C.

By intersecting large radious ball centered at 0 with M,
we get a Liouville domain M. Moreover, the completion of M is
symplectomorphic to M.

• M ↪→ CN algebraic embedding as variety.
Consider polar coordinates (ri , θi ) in CN . Define f := 1

4Σr
2
i .

Then ddc f = Σrdr ∧ dθ exhausting plurisubharmonic of finite
type. ⇒ M.

• Consider a line bundle L with a section s satisfying
s−1(0) = D. Define g := −log ||s|| and ω := −ddcg ⇒ M.

• M, M are Liouville deformation equivalent.
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Example of (Completion of) Liouville Domain

Affine Variety M
= A set of solution of system of polynomial equations in C.

⊂ An example of Stein manifold of finite type
= A complex manifold (M, J), properly embedded in CN with a
function f : M → R satisfying,

• (Plurisubharmonic) (−ddc f )(v , Jv) > 0 for all v ̸= 0,

• (Exhausting) f : M → R is bounded below and the preimage
of every compact set is compact,

• (Of finite type) f has only finitely many singularities.

Given an affine variety M, we get an associated Liouville domain
M by intersecting large radious ball with M. Take a
”gradient-like” vector field of f as our Liouville vector field.

Affine Variety ⊂ Completion of a Liouville domain.
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Hamiltonian Vector Field

• H : R/Z×M → R, a time-dependent Hamiltonian linear at ∞

• Hamiltonian vector field XH : ιXH
ω = −dH

• Hamiltonian 1-periodic orbit
x : S1 = R/Z → (M, ω) with ẋ(t) = XHt (x(t)).
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Hamiltonian Vector Field

D
Figure: Liouville Domain Example
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Hamiltonian Vector Field

Figure: Liouville Domain Example
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Arnold’s Conjecture and Floer’s Answer

Conjecture (Arnold)

The minimun number of fixed points for a Hamiltonian
symplectomorphism ϕ : (M, ω) → (M, ω) is bounded from below
by the the sum of Betti numbers of M.

#Fix(ϕ) ≥ rank(H∗(M)).

Theorem (Floer)

The conjecture holds under certain assumptions.

on Conley, Zehnder, Gromov, Donaldson, Taubes, Uhlenbeck, Witten...
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Hamiltonian Floer Cohomology

Hamiltonian Floer Cohomology ∼ Morse Theory on Loop space.

• Symplectic Action Functional ∼ ”Height” on LM:
for a loop x : S1 → (M, ω)

AH(x) := −
∫
S1 x

∗θ +
∫ 1
0 H(t, x(t))dt

• dAH(x) · (ξ) = −
∫ 1
0 ω(ξ, ẋ − XH)dt=0,

x ∈ L0M, ξ ∈ TxLM.

• Gradient flow line, u : R× S1 → M satisfying (s, t) ∈ R× S1

∂su = −∇AHt (u) ⇐⇒ ∂su + Jt(∂tu − XHt ) = 0.

∵
∫ 1

0
gt(η, (∇AH)x) = (dA)x(η) = −

∫ 1

0
ω(η, ẋ − XH)

=

∫ 1

0
gt(η, Jt

(
ẋ − XH

)
)
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Hamiltonian Floer Cohomology

Figure: Liouville Domain Example
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Example of Maximum Principle

A hypersurface Y ⊂ M of a Liouville manifold is called J-convex if
locally regular level set of a pluri-subharmonic function ddcϕ ≤ 0,
where dc := J∗d .

Lemma

Let Y ⊂ M be a J-convex hypersurface of a Liouville manifold
with a plurisubharmonic function f . Then no J-holomorphic curve
u : R× S1 → M can have an interior tangency point with Y
(i.e., f ◦ u can not have a maximum interior of the domain).

−∆(f ◦ u)ds ∧ dt

= ddc
J0(f ◦ u)

= dJ∗0u
∗df = du∗J∗df

= u∗ddc
J f ≤ 0
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Symplectic Cohomology

HF ∗(M ,Hλ)

• Generators: Hamiltonian 1-orbit, x : S1 → (M, ω).

• Differential: Floer cylinders connecting two critical points x±,
u : R× S1 → M

Symplectic Cohomology of Completion of a Liouville Domain

SH∗(M) := limλ→∞HF ∗(M,Hλ)

The action functional AHt (u(s, t)) increases in s along the
gradient flow, since ∂s(AHt (u(s, t))) = dAHt · ∂su
= −

∫ 1
0 ω(∂su, ∂tu − XHt )dt = −

∫ 1
0 |∂su|2gtdt < 0.

The action filtration on symplectic cochains induces long exact
sequences, for small ϵ > 0.
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Long Exact Sequence by the Action Filtration

The action filtration on symplectic cochains induces long exact
sequences, for small ϵ > 0,

→ SH∗
[−ϵ,ϵ)(M) SH∗

[−ϵ,∞)(M) SH∗
[ϵ,∞)(M)

SH∗+1
[−ϵ,ϵ)(M) SH∗+1

[−ϵ,∞)(M) SH∗+1
[ϵ,∞)(M) →

H∗+1(M)

δ

∼=
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Long Exact Sequence by the Action Filtration

The action filtration on symplectic cochains induces long exact
sequences, for small ϵ > 0,

· · · → H∗(M) SH∗(M) SH∗
+(M)

H∗+1(M) SH∗+1(M) SH∗+1
+ (M) → · · ·

δ

Figure: Floer Cylinders
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Motivation

Definition

• A projective variety X over C is uniruled if for a generic point
x ∈ X , ∃ a rational map CP1 → X passing through x .

• An affine variety M over C is C-uniruled if for a generic point
x ∈ M, ∃ a polynomial map C → M passing through x .

• E.g. Exceptional locus of a blow-up.

Mori’s Minimal Model Program
∼ Study of Rational Curves on a Variety

• Minimal Model: KX = ∧topT ∗
X is nef (KX .C ≥ 0).

• Rational curves C with KX .C < 0 is an obstruction for KX to
be nef.

• Goal of MMP: Get rid of some rational curves. Classify.
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Main Theorem

Symplectic Criteria on Stratified Uniruledness of Affine Variety

· · · → SHm−1(M) → SHm−1
+ (M) //Hm(M) → SHm(M) → · · ·

If there exist [℧] ∈ Hm(M) that is the image of δ for m = 2k or
2k + 1 for some k ∈ N,

Then there exists a C-uniruled subvariety Ξ℧ ⊂ M of complex
dimension at least n − k .

⇐
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Figure: Degeneration to the normal cone
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Main Application

Let M be a smooth affine variety of complex dimension n.

· · · → SHm−1(M) → SHm−1
+ (M) //Hm(M) → SHm(M) → · · ·

Definition (C.)

ℓ(M) := min{deg([α]) : [α] ∈ H∗(M) with 0 ̸= [α] ∈ Image δ}.

ℓ(M) measures the co-dimension of maximal C-uniruled subvariety.

Corollary (C.)

If ℓ(M) = 2k or 2k + 1 (0 ≤ k < n), then
M admits a (n − k)-dimensional family of affine lines.
Moreover, M admits a uniruled subvariety of dimension n − k.
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Corollaries

Corollary (C.)

If ℓ(M) = 0 or 1, then M is C-uniruled.

Corollary

If SH∗(M) = 0, then ℓ(M) = 0. Therefore M is -uniruled.
(See also Theorem 5.4 in [Zhou19])

Proposition (C.)

ℓ(M#eN) = min{ℓ(M), ℓ(N)}.

Proposition (C.)

ℓ(M × N) = min{ℓ(M), ℓ(N)}.
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Invariance of Symplectic Cohomology

0

��

0

��
→ SHk−1(M⋑k)

∼=
��

// SHk−1
+ (M⋑k) //

��

Hk(M⋑k) //

��

SHk(M⋑k) →

∼=
��

→ SHk−1(M)
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// SHk−1
+ (M) //

��

Hk(M) //

��

SHk(M) →

��
0 0 0 0
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Application of the Corollary

Theorem (C.’21)

Let W be a Weinstein manifold of dimW = 2n with ℓ(W ) = ∞.
Suppose that we have a Weinstein manifold W⋑k , obtained by
attaching Weinstein k-handles to W (k < n) so that
rk Hk(W⋑k) > rk Hk(W ). Then ℓ(W⋑k) = k.

Hence, if W⋑k is symplectomorphic to an affine variety M⋑k , then
M⋑k admits a C-uniruled subvariety of complex dimension

⌈
n− k

2

⌉
.

Lemma (Cieliebak ’02)

Subcritical Weinstein handle attachment does not change
symplectic cohomology: SH∗(M⋑k) ∼= SH∗(M).
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Cylindrical Affine Variety

An affine variety M is called cylindrical

if it contains a dense principal Zariski open subset
U = M \ (f = 0) ∼= C×M ′,

for some f ∈ O(X ), for an affine variety M ′

(Kishimoto, Prokhorov, Zaidenberg,’11)

By Künneth formula,
SH∗(M \ (f = 0)) ∼= SH∗(C)× SH∗(M′) = 0.

Is SH∗(M) = 0?
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Theorem (C.’22)

For a cylindrical affine variety M, ŜH
∗
(M) ∼= SH∗(M ⊂ M) = 0.

Key Idea

For a smooth hypersurface Y ⊂ M,

∃ Spectral Sequence, SH∗(M \ Y ⊂ M \ Y
)
⇒ SH∗(M ⊂ M).

More precisely,

SH∗
D1∪D2

(
K \ D2 ⊂ X \ (D1 ∪ D2)

)
⇒ SH∗

D1
(K ⊂ X \ D1)
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Towards Log-Minimal Model Program of Affine 3-folds

Let M be a normal quasi-projective complex threefold and X be a
normal projective threefold compactifying M with D := X \M.
Choose a point q ∈ D where X is smooth. Let f : X̃ → X be the
weighted blow-up at q with weights (1, 1, b), where b ∈. Let
E ∼= P2

(1,1,b) be the exceptional divisor of f and D̃ := f −1(D).

Definition (Kishimoto, ’06)

M̃ := X̃ \ D̃ is a half-point attachment to M : X \ D.

Theorem (C.’22 Spectral Sequence)

Let M̃ be a half-point attachment to M at a smooth point on a
hypersurface: M̃ := BlpA \ Ỹ = M ∪ (E ∪ M̃) and M̃,M smooth.
Then, E 1 : SH∗(M) ∼= SH∗(M̃ \ (E ∪ M̃)) ⇒ SH∗(M̃).
Moreover, ℓ(M̃) ≤ ℓ(M).
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Remarks on Symplectic Cohomology

• (Viterbo ’99) SH∗(T ∗L) ∼= H∗(LL) (LL, the free loop space of L).

• (Abouzaid ’10) SH∗(M) ∼= HH∗(WFuk(M)).

• (Pascaleff ’19) SH∗ of log-CY surfaces.

• (Ekholm–Lekili ’23) Weinstein manifold X with an exact Lagrangian
submanifold L, with ideal contact boundary with Legendrian
submanifold Λ. Chekanov-Eliashberg DG-algebra of the Legendrian
and the Lagrangian Floer cohomology of the Lagrangian are Koszul
dual. (“Generalization between C−∗(ΩL)” (ΩL and C∗(L), the
based loop space of L).

• (Borman–Sheridan–Varolgunes ’22) Quantum cohomology as a
deformation of symplectic cohomology.

• (Abouzaid–Groman–Varolgunes ’22) Framed E2 operad acting on
Hamiltonian Floer theory ⇒ The relative symplectic cohomology
group carries a natural BV-algebra structure.
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Thank you!
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