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A hypergraph is a generalization of a graph in which an edge may
have any number of vertices.

k-uniform hypergraph: every edge holds k vertices.

Example. 3-uniform hypergraph on 5 vertices, the edge set is
E = {v1v2v3, v3v4v5}.
Example. 2-uniform hypergraph = (ordinary) graph.
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Hypergraphs
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The neighborhood of a set U , Γ(U), is a set of all vertices x
such that x ∪ U is an edge.

Example. The neighborhood of {v3} is
Γ(v3) = {v1, v2, v4, v5}.
Example. The neighborhood of {v2, v3} is Γ(v2, v3) = {v1}.
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Spectral graph theory

Spectral graph theory (∼1950s) aims to obtain structural
information about graphs from their spectra.

Many known results for graphs (Van Dam, Haemers, 2003):

Regularity and bipartiteness can be determined from the
spectrum

Sharp eigenvalue bounds on NP-hard graph parameters
(independence/chromatic number, . . . )

Almost all trees and strongly regular graphs have cospectral
mates

Haemers’s conjecture (2003): Almost all graphs are
determined by their spectrum

. . .
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Spectral hypergraph theory

Spectral hypergraph theory (∼1990s) aims to obtain
structural information about hypergraphs from their spectra.

Some results in spectral hypergraph theory include (Cooper,
Dutle, 2012):

Regularity and bipartiteness can be determined from the
hypergraph spectrum

Eigenvalue bounds on the chromatic number of (oriented)
hypergraphs (A., Mulas, Zhang, 2021)

. . .
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Spectral hypergraph theory

Very few results are known for spectral characterizations of
hypergraphs.

(Bu, Zhou, Wei, 2014) showed that the following families of
hypergraphs are determined by their spectra:

complete k-uniform hypergraphs and their complements,

complete k-uniform hypergraphs without one edge,

subhypergraphs of complete (n − 1)-uniform hypergraphs.

Our wish: fill this literature gap.
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Goal

Two hypergraphs are cospectral if they have the same
spectrum (eigenvalues).

Studying cospectral graphs (hypergraphs) helps us reveal
which structural properties cannot be deduced from the
spectra.

Methods to construct cospectral graphs include:

GM-switching (Godsil, McKay, 1982),

WQH-switching (Wang, Qiu, Hu, 2019),

. . .

Our goal is to obtain new methods to construct cospectral
hypergraphs.
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Representations of hypergraphs

The spectrum of a hypergraph can be calculated in different
ways based on how the hypergraph is represented:

1 adjacency tensor, or hypermatrix (Cooper, Dutle, 2012),
2 integer matrix with number of common edges as its

entries (Feng, Li, 1996),
3 . . .

We focus on the first two representations.
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Switching methods for hypergraphs

The GM-switching procedure has been extended to
hypergraphs:

GM-switching WQH-switching
(Godsil, McKay, 1982) (Wang, Qiu, Hu, 2019)

↓ ↓

adjacency tensor: (Bu, Zhou, Wei, 2014) ?

matrix representation: (Sarkar, Banerjee, 2020) ?
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Constructing cospectral hypergraphs

with respect to tensors
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Adjacency tensor of a hypergraph

For a k-uniform hypergraph on n vertices we can define the
adjacency tensor A = (ai1···ik ) of order k (length string of
vertices) and dimension n (number of vertices):

ai1···ik =

{
1

(k−1)! , {i1, . . . , ik} ∈ E ,

0, otherwise.

Remark 1. The adjacency tensor can be only defined for
uniform hypergraphs.

Remark 2. Computing eigenvalues of a tensor is NP-hard
(Hillar, Lim, 2013). Reduction is to square quadratic feasibility
problem (is there an x such that x>Ax = 0), which in turn
reduced to graph 3-colorability problem.
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Adjacency tensor of a hypergraph

ai1···ik =

{
1

(k−1)! {i1, . . . , ik} ∈ E ,

0 otherwise.

v1

v2

v3

v4

v5

Example. Adjacency tensor of order 3 and dimension 5
corresponding to the 3-uniform hypergraph:

v1 v2 v3 v4 v5

v1
v2
v3
v4
v5

v1
v2
v3
v4
v5

13 / 33



Eigenvalues of a tensor

What are the eigenvalues of a tensor?

For a matrix A of dimension n:

λ is a root of the characteristic polynomial

ϕA(λ) = det(λIn − A) , or equivalently,

λ is an eigenvalue if Ax = λx for some vector x 6= 0 and
x>x = 1.

14 / 33



Eigenvalues of a tensor

What are the eigenvalues of a tensor?

For a tensor A of order k and dimension n there are two
different definitions (Qi, 2005) and (Lim, 2005):

λ is an eigenvalue if it is a root of the characteristic

polynomial ΦA(λ) = det(λIn −A) .

λ is an E-eigenvalue if Ax = λx for some x 6= 0 and
x>x = 1. The tensor-vector product in Ax is defined
similarly to the usual matrix-vector product (Shao, 2013).

Two hypergraphs are cospectral (E-cospectral) if they have
the same eigenvalues (E-eigenvalues).

In this talk we will construct hypergraphs that are
E-cospectral.
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GM-switching (ordinary graphs)

Theorem (Godsil, McKay, 1982)

Let G be a graph whose vertex set admits a partition
C1 ∪ C2 ∪ · · · ∪ Cm ∪ D such that:

1 For any i ≤ m each vertex in D has either 0, 1
2 |Ci |, or |Ci |

neighbors in Ci .

2 Equitable partition: for all i , j ≤ m every vertex in Ci has the
same number of neighbors in Cj .

To construct the graph H, for any v ∈ D that has 1
2 |Ci | neighbors

in Ci switch the adjacency of {u, v} for all u ∈ Ci . Then H is a
cospectral graph with G .

D DC1 C1
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WQH-switching (ordinary graphs)

Theorem (Wang, Qiu, Hu, 2019)

Let G be a graph whose vertex set admits a partition C1 ∪ C2 ∪ D
such that:

1 |C1| = |C2| .

2 There exists a constant c such that for any v ∈ Ci we have
|Γ(v) ∩ Cj | − |Γ(v) ∩ Ci | = c , where {i , j} = {1, 2}.

3 For any vertex v ∈ D we have either
Γ(v) ∩ (C1 ∪ C2) ∈ {C1,C2} or |Γ(v) ∩ C1| = |Γ(v) ∩ C2| .

To construct the graph H, for any v ∈ D such that
Γ(v) ∩ (C1 ∪ C2) ∈ {C1,C2} switch the adjacency of {u, v} for any
u ∈ C1 ∪ C2. Then H is a cospectral graph with G .
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WQH-switching (example)

C1 C2

D

u1

u2

u3 u4

u5

u6

v1 v2

|Γ(u2) ∩ C2| − |Γ(u2) ∩ C1| = 2− 1 = 1

C1 C2

D

u1

u2

u3 u4

u5

u6

v1 v2

|Γ(u1) ∩ C2| − |Γ(u1) ∩ C1| = 1− 0 = 1

|Γ(v2) ∩ C1| = |Γ(v2) ∩ C2|
Γ(v1) ∩ (C1 ∪ C2) = C1

. . .

Switching edges: v1u1
v1u2
v1u3

v1u4
v1u5
v1u6
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WQH-switching (ordinary graphs)

Theorem (Wang, Qiu, Hu, 2019)

Let G be a graph whose vertex set admits a partition C1 ∪ C2 ∪ D
such that:

1 |C1| = |C2| .

2 There exists a constant c such that for any v ∈ Ci we have
|Γ(v) ∩ Cj | − |Γ(v) ∩ Ci | = c , where {i , j} = {1, 2}.

3 For any vertex v ∈ D we have either
Γ(v) ∩ (C1 ∪ C2) ∈ {C1,C2} or |Γ(v) ∩ C1| = |Γ(v) ∩ C2| .

To construct a graph H, for any v ∈ D such that
Γ(v) ∩ (C1 ∪ C2) ∈ {C1,C2} switch the adjacency of {u, v} for any
u ∈ C1 ∪ C2. Then H is a cospectral graph with G .

A generalized version of this switching for a partition of the
vertices into 2m + 1 subsets C1 ∪ · · · ∪ C2m ∪ D was described by
(Qiu, Ju, Wang, 2020).
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New switching for hypergraphs (tensors)

Theorem 1 (A., Khramova, 2024)

Let G be a k-uniform hypergraph whose vertex set admits a
partition C1 ∪ C2 ∪ D, and such that:

1 |C1| = |C2| .

2 Any edge has at least k − 1 vertices in D .

3 For any k − 1 distinct vertices u2, . . . , uk from D, we have
Γ(u2, . . . , uk) ∩ (C1 ∪ C2) ∈ {C1,C2} or

|Γ(u2, . . . , uk) ∩ C1| = |Γ(u2, . . . , uk) ∩ C2| .

To construct the hypergraph H, for any {u2, . . . , uk} ⊆ D such
that its neighbors in C1 ∪ C2 are all in C1 (or C2), switch the
adjacency of {u1, . . . , uk} for all u1 ∈ C1 ∪ C2. Then H is a
k-uniform E -cospectral hypergraph with G .
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New switching for hypergraphs (tensors)

v1

v2

v3

u1

u2

u3

u4

u5

u6

D

C1 C2

v2v3u1
v2v3u4

v1v3u2

v1v3u3
v1v3u4
v1v3u5

Edges:
v1v2u1
v1v2u2
v1v2u3

|C1| = |C2| = 3.

Every edge has 2 vertices in D
(this is a 3-uniform
hypergraph).

Γ(v1, v2) = C1

(no neighbors in C2);

v2, v3 have one neighbor in each
C1 and C2;

v1, v3 have 2 neighbors in each
C1 and C2.
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New switching for hypergraphs (tensors)

v1

v2

v3

u1

u2

u3

u4

u5

u6

v1v2u1
v1v2u2
v1v2u3

v2v3u1
v2v3u4

v1v3u2

v1v3u3
v1v3u4
v1v3u5

v1

v2

v3

u1

u2

u3

u4

u5

u6
v1v2u4
v1v2u5
v1v2u6

Common edges:

Switching edges (condition 3 red):

D

C1 C2
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New switching for hypergraphs (tensors)

Theorem 1+ (A., Khramova, 2024)

Let G be a k-uniform hypergraph whose vertex set admits a
partition C1 ∪ C2 ∪ · · · ∪ C2m ∪ D for some m ≥ 1, and such that:

1 |Ci | = |Ci+1| for all odd i < 2m.

2 Any edge has at least k − 1 vertices in D .

3 For any odd i < 2m and k − 1 distinct vertices u2, . . . , uk
from D, we have Γ(u2, . . . , uk) ∩ (Ci ∪ Ci+1) ∈ {Ci ,Ci+1} or

|Γ(u2, . . . , uk) ∩ Ci | = |Γ(u2, . . . , uk) ∩ Ci+1| .

To construct the hypergraph H, for any {u2, . . . , uk} ⊆ D such
that its neighbors in Ci ∪ Ci+1 are all in Ci (or Ci+1), switch the
adjacency of {u1, . . . , uk} for all u1 ∈ Ci ∪ Ci+1. Then H is a
k-uniform E -cospectral ypergraph with G .
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Constructing cospectral hypergraphs

with respect to matrices
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Matrix representation of a hypergraph

First proposed by (Feng, Li, 1996), and a similar definition is used
by (Sarkar, Banerjee, 2020) to define a GM-switching for
hypergraphs.

A =


0 1 2 1
1 0 1 0
2 1 0 1
1 0 1 0


v1

v2

v3

v4

The entry aij of A = (aij) is the number of edges that contain both
vi and vj .
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Matrix representation of a hypergraph: downside

The matrix can be interpreted as an adjacency matrix of a
multigraph; so with no additional information the hypergraph is
not uniquely determined.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0



It is not as immediately clear what the edges are just from the
matrix alone as it is when using the tensor definition, but the
computation of eigenvalues can be done in polynomial time.
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Hypergraph representations comparison

Tensor

+ contains full information
about the hypergraph

+ the edge list is trivially
obtained

+ existing spectral
characterization results

- only applies to uniform
hypergraphs

- computing eigenvalues is
NP-hard

Matrix

- not enough to uniquely determine a
hypergraph

- obtaining the edge list requires
extra calculation

+ can be defined for non-uniform
hypergraphs

+ computing eigenvalues can be done
in polynomial time

+ more feasible for use in related
fields and applications (random
hypergraphs, neural networks, . . . )

26 / 33



New switching for hypergraphs (matrices)

Theorem 2 (A., Khramova, 2024)

Let G be a k-uniform hypergraph whose vertex set admits a
partition C1 ∪ C2 ∪ · · · ∪ C2m ∪ D for some m ≥ 1, and such that:

1 |Ci | = t for all i and some t, while |D| = k − 1.

2 Any edge of G has 0 or k − 1 vertices in D.

3 For any odd i < 2m, we have either Γ(D) ∩ (Ci ∪ Ci+1) = Ci

or |Γ(D) ∩ Ci | = |Γ(D) ∩ Ci+1| .

4 For the adjacency matrix A and each i , j ≤ 2m there exists αij

such that∑
u∈Ci

Auv =
∑
u∈Ci

Avu =
∑
u∈Cj

Auw =
∑
u∈Cj

Awu = αij for v ∈ Cj , w ∈ Ci .

To construct the hypergraph H, remove all edges (v ,D) such that
v ∈ Ci and Γ(D) ⊇ Ci and add edges (u,D) with u ∈ Ci+1, for all
odd i < 2m. Then H is cospectral to G with respect to matrix
representation.
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New switching for hypergraphs (matrices)

u2
u3

u1

u9

u7

u8

u4

u5

u6

u10

u11

u12

C1

C2

C3

C4

v1 v2D

|Ci | = 3 for i = 1, 2, 3, 4.

|D| = 2 in a 3-uniform
hypergraph.

Every edge has 0 or 2
vertices in D.

v1, v2 are adjacent to all
of C1 and none of C2.

v1, v2 are adjacent to one
vertex in both C3 or C4.

number of neighbors in
Cj is the same for all
v ∈ Ci , i , j = 1, 2, 3, 4
(equitable partition).
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New switching for hypergraphs (matrices)

v1 v2

u2
u3

u1

u9
u7

u8

u4

u5

u6

u10

u11

u12

v1 v2

u2
u3

u1

u9
u7

u8

u4

u5

u6

u10

u11

u12

D

C1

C2

C3

C4

Common edges:

u1u2u3
u1u4u5
u2u5u6
u3u4u6

u7u10u12
u8u10u11
u9u11u12

u7v1v2
u10v1v2

Switching edges:

v1v2u1
v1v2u2
v1v2u3

v1v2u4
v1v2u5
v1v2u6

29 / 33



Conclusion and future research
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Conclusion and future research

GM-switching WQH-switching Other methods?
(Godsil, McKay, 1982) (Wang, Qiu, Hu, 2019)

↓ ↓ ↓

tensor: (Bu, Zhou, Wei, 2014) Theorem 1 ?

matrix: (Sarkar, Banerjee, 2020) Theorem 2 ?

What other results of spectral graph theory admit an extension to
hypergraphs?

Tools that could be used to derive new results on spectral
characterizations of hypergraphs?

Develop switching methods to construct cospectral oriented
hypergraphs.

Interpretation/application of cospectral hypergraphs in chemistry?
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Thank you for listening!

For further details see:

A. Abiad, A.P. Khramova,

Constructing cospectral hypergraphs

Linear and Multilinear Algebra, to appear.

https://arxiv.org/abs/2211.06087


Proof idea (tensors)

Two graphs G and H with adjacency matrices A(G ) and A(H)
are cospectral if there exists a rational orthogonal matrix Q
such that

A(H) = Q>A(G )Q.

In the case of ordinary graphs, such orthogonal matrix Q can
be obtained for both GM-switching and WQH-switching.



Proof idea (tensors)

For hypergraphs, a similar observation is true:

Two hypergraphs G and H with adjacency tensors A(G ) and
A(H) are cospectral if there exists a rational orthogonal
matrix Q such that

A(H) = Q>A(G )Q.

The challenge in the hypergraph context is to combinatorially
define a switching operation that corresponds to an
appropriate Q.


