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Clustering

Clustering: A central problem in pattern recognition

The process of partitioning a set of data objects into disjoint
groups (clusters), so that objects of the same cluster are more
similar to each other, with respect to a given similarity measure,
compared to objects in different clusters

• Improve understanding of data: e.g. Document clustering

• First step for different purposes: e.g. Market Segmentation

• Not unique definition of true cluster

• Progress in automated data acquisition and storage
technologies generates novel challenges to clustering



High Dimensionality

• “distances between points become relatively uniform” (Beyer
et al 1999)

lim
d→∞

MaxDist−MinDist

MinDist
= 0

• things are sometimes not as bad as they might seem
(Steibach et al 2003)

• Local rather than global feature relevance / correlation

High-Dimensional Clustering

• Search for the relevant subspaces

• Detection of final clusters

• Very active research area over the last 10-15 years

• With very few exceptions all approaches assume unlimited
access to the data and static environment



Streaming Data

Data Stream
Process generating data sequentially at high frequency relative to
available processing or storage capabilities.

1 Process one example at a
time

• Once inspected or ignored
it is discarded

2 Limited memory usage

3 Limited time per example

4 Anytime: Supply a model
that can be used for
prediction at any time



Methods for High-Dimensional Clustering Data-Streams

• Sliding windows: Very sensitive to window size, unstable and
inconsistent results over time

• CluStream (Aggarwal et al., 2003):

• Microcluster : Accumulates first and second order spatial and
temporal information

• Executes static offline clustering (k-means) on micro-clusters
rather than original data

• Handles non-stationarity using windows

• HPStream (Aggarwal et al., 2004):
• High-dimensional “version” of CluStream
• Each cluster defined in an axis parallel subspace (ignores

dimensions in which clusters are less cohesive)
• Handles non-stationarity through exponential decay –

forgetting

• Both require offline initialisation and specification of the
number of clusters



Background: Projected Divisive Clustering

Principal Direction Divisive Partitioning (PDDP) (Boley, 1998):

• Project onto first principal component
• Split point at mean projection

• Well separated clusters can be well split at combined mean
• A cluster that is “split” can be separated in subsequent

iterations

• Termination criterion requires domain specific knowledge



Background: Projected Divisive Clustering

dePDDP (Tasoulis et al., 2010):
• Split point at lowest local minimum in projected density

estimate (KDE)
• Hyperplane with lowest density integral: Avoid splitting

clusters

• Modality-based cluster definition: terminate when all marginal
distributions are unimodal



Projected Divisive Clustering

Advantages

• Challenging problem of clustering HD data reduced to
collection of simple subproblems

• Exploits sparsity: Restriction to convex polyhedra doesn’t
compromise accuracy

• Incremental PCA algorithms with guaranteed convergence and
O(1) complexity

• Incremental (and adaptive) kernel density estimation methods
with bounded memory

Difficulties

• When should a cluster be separated?

• Continually updating hierarchical models compounds
instability

• Dealing with non-stationary data – Population drift



Separability of a Streaming Sample

• The Dip Test (Hartigan & Hartigan, 1985) tests for
multimodality of a 1D sample

• Finds closest distribution function with unimodal density to the
empirical cdf of a sample (supremum norm)

• Requires a full sample

• Approximate sample by m compact intervals and associated
counts

• Lemma: Dip Statistic computed on such sample lower
bounds the true ⇒ Avoids introducing erroneous splits

• Streaming Dip Statistic computed in O(m) time
• Don’t have optimal way of selecting intervals, but observed

approximation is better when distribution is multimodal

• After split projection direction and split point remain fixed



Accuracy of Projected Sample

• Shifting projection ⇒ non-stationary sample

• Forgetting factor λ ∈ [0, 1]

wt,i = (1− λ)t−i , Wt =
t∑

i=1

wt,i

f̂t(p) =
1

Wt

t∑
i=1

wt,i

hi
K

(
p − pi

hi

)
• Updates of projection direction used to adapt λ

λt+1 = γλt + (1− γ) arccos
(

eTt+1et
)

• Lemma: et → e ⇒ λt → 0



Handling Non-Stationarity

• Numerous types of change possible: Cluster creation/
deletion, Abrupt or gradual shift, Change of shape

• Intuition: Hierarchy “correctly” partitions clusters

• Changes rendering part of the hierarchy inaccurate are those
which invalidate splitting rule at internal nodes

• Not all change renders the model obsolete
• Splitting leaf nodes does not invalidate hierarchy



Change Detection

• Determine whether split point is local minimum

• Bernoulli CUSUM:

• NS contains proportion β of NL on either side
• p0 estimated using KDE, p1 = β

B =

{
1, if xt ∈ NS

0, otherwise

St = max{0, St−1}+ B + log

(
1− p1

1− p0

)
log

(
p1(1− p0)

p0(1− p1)

)−1
• Corrects erroneous splits due to sequential observation of data



Simulated Datasets: Static

20 Clusters, 500 Dimensions
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Non-Stationary Results

Splitting Clusters (20-60). 500 dimensions
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Non-Stationary Results

Merging Clusters (60-20). 500 dimensions
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Non-Stationary Results

20 Clusters, 500 Dimensions. Distribution Overhaul
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Non-Stationary Results

Histogram of Change_Detection
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Forest Cover Type Data

• UCI: 581,012 obs, 7 clusters, 10 num features

Figure: Forest Cover Type Divided Into 5 Segments

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.0
0.2

0.4
0.6

0.8
1.0

Time steps

Pro
port

ion



Forest Cover Type Data
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Conclusions

Conclusions

• Approach for incremental clustering under population drift

• Estimate number of clusters

• Drift detection problem has a well defined form, but remains
difficult to solve

• Limit revision to part of clustering result that is invalid

• Performance depends on stability

Future Work

• Find low density hyperplanes directly (locally optimal
solutions)

• Density free mode/anti-mode seeking

• Different data types (time series data)
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