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Motivation: classifying black hole spacetimes

@ BH uniqueness [Israel, Hawking, Carter, Robinson '70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.
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Motivation: classifying black hole spacetimes

@ BH uniqueness [Israel, Hawking, Carter, Robinson '70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.

@ In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry
(horizon S3) and black rings [Emparan-Reall '01] (horizon S? x S1).
Classification still largely open.
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Motivation: classifying black hole spacetimes

@ BH uniqueness [Israel, Hawking, Carter, Robinson '70s]: all (analytic)
stationary, asymptotically flat solutions of the 4D vacuum Einstein
equations with a connected, non-degenerate event horizon are Kerr.

@ In higher dimensions uniqueness is violated, e.g. 5D Myers-Perry
(horizon S3) and black rings [Emparan-Reall '01] (horizon S? x S1).
Classification still largely open.

@ Extremal black holes admit near horizon geometries that can be
classified independently of the exterior solution. This imposes
constraints on extremal BH spacetimes.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

@ Introduce Gaussian null coordinates s.t. H = {r =0}, K = %

g = 2dv (dr + rX,(r,2)dz® + 3r*F(r,z)dv) + gap(r, z)dzda’.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

@ Introduce Gaussian null coordinates s.t. H = {r =0}, K = %

g = 2dv (dr + rX,(r,2)dz® + 3r*F(r,z)dv) + gap(r, z)dzda’.

@ Near-horizon limit: 7 — er,v % take € — 0.

gnH = 2dv (dr + 7 X, (z)dz® + %’I“QF(LE)CIU) + gap(x)dzdzb.
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Extremal horizons [Kunduri-Lucietti '13]

e Let (N,g) be an (n + 2)-dimensional spacetime containing an
extremal Killing horizon H with normal K (so d(|K|?) = 0 on H).
Suppose M is a compact n-dimensional cross-section of H.

@ Introduce Gaussian null coordinates s.t. H = {r =0}, K = %

g = 2dv (dr + rX,(r,2)dz® + 3r*F(r,z)dv) + gap(r, z)dzda’.

@ Near-horizon limit: 7 — er,v % take € — 0.

gnH = 2dv (dr + 7 X, (z)dz® + %’I“QF(LE)CIU) + gap(x)dzdzb.

@ gyy determined by near-horizon data (g, F, X) on M.
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit

Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit
Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
@ Next impose Einstein equations on (N, g)

G,uy [g] + Ag,uy = T,ul/-
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit
Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
@ Next impose Einstein equations on (N, g)
Gulgl +Ag,, = Ty
@ In NH limit this determines F' = F'(X, g, Tup, Tyr) and imposes
Ry = %XaXb — V(aXp) + Aab + Pab,

1
Pab - Tab - E(QCchd + 2Tvr)gab~
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Near-horizon equations

@ Energy-momentum tensor 7" also has near-horizon limit
Tin = 2dv (Tor(2)dr + 784 (z)d2® + 2r?a(z)dv) + Tup(z)dzda’.
@ Next impose Einstein equations on (N, g)
Gulgl +Ag,, = Ty
@ In NH limit this determines F' = F'(X, g, Tup, Tyr) and imposes
Ry = %XaXb — V(aXp) + Aab + Pab,
Pop = Tap — %(QCchd + 207 ) Gab-

o Together with matter eqns: near-horizon equations (NHE) on M.
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@ Review of vacuum extremal horizons
@ Rigidity of the extremal Kerr-Newman horizon
@ Rigidity of quasi-Einstein metrics

© Topology of generalized extremal horizons
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.

@ A solution is trivial if X = 0 and static if dX? = 0.
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.

@ A solution is trivial if X = 0 and static if dX? = 0.

e Example: extremal Kerr horizon. M = S?,\ = 0.

(14 2?)da? N 4a%(1 — 2?)d¢?
B 1—2a2 1+ 22

K —-VI 1
:%7 where F:§(1+x2), K=—_—.

)

X

a rotation parameter, x € [—1,1], ¢ € [0, 27).
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The NHE in vacuum

e Vacuum NHE: compact Riemannian manifold (M, g) with a vector
field X € X(M) satisfying

1
Rap = 5XaXp = V(0 Xp) + Aas.

@ A solution is trivial if X = 0 and static if dX? = 0.

e Example: extremal Kerr horizon. M = S?,\ = 0.

(14 2?)da? N 4a%(1 — 2?)d¢?
B 1—2a2 1+ 22

K —-VI 1
:%7 where F:§(1+x2), K=—_—.

)

X

a rotation parameter, x € [—1,1], ¢ € [0, 27).

@ Q: Are there other (global) solutions to the n = 2 vacuum NHE?
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Rigidity of the extremal Kerr horizon

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE holds.
Then (M, g) admits a Killing vector field K. Moreover, [K, X] = 0.

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 18 September 2024



Rigidity of the extremal Kerr horizon

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE holds.
Then (M, g) admits a Killing vector field K. Moreover, [K, X] = 0.

@ Corollary: The general non-trivial solution to the n = 2 vacuum NHE
is given by extremal Kerr-(A)dS horizon.
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Rigidity of the extremal Kerr horizon

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE holds.
Then (M, g) admits a Killing vector field K. Moreover, [K, X] = 0.

@ Corollary: The general non-trivial solution to the n = 2 vacuum NHE
is given by extremal Kerr-(A)dS horizon.

@ Proof: let I' > 0 be any smooth function and make an Ansatz for K

K=TX+VI.
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Rigidity of the extremal Kerr horizon

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE holds.
Then (M, g) admits a Killing vector field K. Moreover, [K, X] = 0.

@ Corollary: The general non-trivial solution to the n = 2 vacuum NHE
is given by extremal Kerr-(A)dS horizon.

@ Proof: let I' > 0 be any smooth function and make an Ansatz for K

K=TX+VI.

o NHE implies an identity |Lxg|? = (VoK) (...) + Va(...%). Fix T
s.t. VoK® =0 and integrate over M — Lig=0.
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Rigidity of the extremal Kerr horizon

Theorem [Dunajski-Lucietti '23, Colling-Dunajski-Kunduri-Lucietti '24]

Let (M, g) be a compact Riemannian manifold without boundary
admitting a non-gradient vector field X such that the vacuum NHE holds.
Then (M, g) admits a Killing vector field K. Moreover, [K, X] = 0.

@ Corollary: The general non-trivial solution to the n = 2 vacuum NHE
is given by extremal Kerr-(A)dS horizon.

@ Proof: let I' > 0 be any smooth function and make an Ansatz for K

K=TX+VI.

o NHE implies an identity |Lxg|? = (VoK) (...) + Va(...%). Fix T
s.t. VoK® =0 and integrate over M — Lig=0.

o LR =0 gives linear elliptic PDE for LxI' = [K, X]|=0.
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The NHE in Einstein-Maxwell theory

@ Energy-momentum tensor for Einstein-Maxwell

Ty =2 (FupF," — 1F oo F 7 8p) -
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The NHE in Einstein-Maxwell theory

@ Energy-momentum tensor for Einstein-Maxwell
Ty =2 (FupF," — 1F oo F 7 8p) -
o Maxwell 2-form F is closed and has NH limit

Fnu = d(ry(x)dv) + 5 Bgy(z)dz® A da?
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The NHE in Einstein-Maxwell theory

@ Energy-momentum tensor for Einstein-Maxwell
Ty =2 (]:up]:up - i}—pa}—paguu) :
o Maxwell 2-form F is closed and has NH limit
Fn = d(r(z)dv) + 2 Boy(x)da® A da

e Einstein-Maxwell NHE: compact Riemannian manifold (M, g) with
X € X(M), ¢ € C®(M), B € Q*(M) satisfying dB = 0 and
1
Raup= iXaXb = V(aXp) + Agab + Pas,
(V" = X)) By, = =(Ve = Xp)¥,

where .
Py, = 2Bu.B,° + ggab(w2 — BgB“).
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Extremal Kerr-Newman horizon

o Example: extremal Kerr-Newman horizon. M = S?, X\ = 0.

1— 22)(a2 + r2)2
g= p+ d +( Z )(Z T+) d¢27
11—z Jh
K-Vr 2 1 9
X:7V7 where T' = p+,K:
r 2ar, —|—r+3¢
w:aQQZ x? 2aPr+x—Qr+
P
B:_(a2+r+)( 2Px2j:2aQr+x—Pri)d$Ad¢.
Py

Here p2 =12 + a?2?,r2 = a® + P? + Q2. a rotation parameter,

P, Q magnetic resp. electric charge. x € [—1,1],¢ € [0, 27).
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 18 September 2024 10 /26



Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

@ [Chrusciel-Tod '07, Kunduri-Lucietti '09, Kamiriski-Lewandowski '24]: every
static solution is trivial, i.e. X =0 and R,,*B are constant.
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

@ [Chrusciel-Tod '07, Kunduri-Lucietti '09, Kamiriski-Lewandowski '24]: every
static solution is trivial, i.e. X =0 and R,,*B are constant.

@ [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]: extremal KN horizon
is unique non-trivial solution with U(1) action preserving (g, X, v, B).
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Rigidity of the extremal Kerr-Newman horizon

e From now on set n = 2 (four space-time dimensions).

@ [Chrusciel-Tod '07, Kunduri-Lucietti '09, Kamiriski-Lewandowski '24]: every
static solution is trivial, i.e. X =0 and R,,*B are constant.

@ [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]: extremal KN horizon
is unique non-trivial solution with U(1) action preserving (g, X, v, B).

Theorem [Colling-Katona-Lucietti '24]

Let (M, g) be a compact, oriented Riemannian surface (without boundary)
admitting a non-gradient vector field X such that the Einstein-Maxwell
NHE hold. Then (M, g) admits a Killing vector field K. Moreover,

[K,X] =0, Lxt)=0and LxB = 0.
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.

e Proof: Assume p# 0. On M = {p > 0} the function p solves

Alogp =V X
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.

e Proof: Assume p# 0. On M = {p > 0} the function p solves
Alogp =V X

o Let f be a global solution to Af = V,X*“ and consider h = logp — f
on M. Maximum principle: h = ¢ = const = p = et > 0. O
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The matter equation for n = 2

@ Define the function = xB. The matter equation becomes

*(dB — BX°) = dip — pX°.

Let (M, g) be a compact, oriented Riemannian surface admitting a
solution (X, %, B) to the Einstein-Maxwell NHE. Then the function

p = /3% + 1?2 is either identically zero or strictly positive.

e Proof: Assume p# 0. On M = {p > 0} the function p solves
Alogp =V X

o Let f be a global solution to Af = V,X*“ and consider h = logp — f
on M. Maximum principle: h = ¢ = const = p = et > 0. O

@ Other proof: [Dobkowski-Rytko, Kamiriski, Lewandowski, Szereszewski '18].
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Tensor identity

@ Einstein-Maxwell NHE in terms of K =T'X + VI

KKy (VaD)(VBD) 1
212 212 T

1
Rap = Vil + pVaVel' + Agay + P*Gab-
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Tensor identity

@ Einstein-Maxwell NHE in terms of K =T'X + VI

KKy (VaD)(VBD) 1
212 212 T

1
Rab — v(aKb) + fvaVbF + )\gab + ngab-

Proposition
For any solution to the Einstein-Maxwell NHE the following identity holds

1
Z|£K9|2 +2|V(Ip)* =

ve (Kbv(aKb) — LK,AT — LK, V,K? — ATK, + vaa(Fp)>

1 1 1 1
+ VK (—ﬁ|K|2 i QAF + §vab i ﬁKbvbr + A — rp2> .

v

Colling (DAMTP, Cambridge) Rigidity Kerr-Newman 18 September 2024 12 /26



Derivation of tensor identity

@ Proof follows [Dunajski-Lucietti '23]. Write
1
T1Ligl = V(K VK = V* (K'Y, K ) = K"V (oK),

and calculate last term using V(R — %Rgab) = 0 applied to NHE.
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Derivation of tensor identity

@ Proof follows [Dunajski-Lucietti '23]. Write
1
T1Ligl = V(K VK = V* (K'Y, K ) = K"V (oK),
and calculate last term using V(R — %Rgab) = 0 applied to NHE.

o Evaluate triple derivative term VV ,Ky) = V4V, V,I' + ... using
[Va, V]Ve = Ry, V@ and NHE again. Introduces extra term p*V,T.
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Derivation of tensor identity

@ Proof follows [Dunajski-Lucietti '23]. Write
1
T1Ligl = V(K VK = V* (K'Y, K ) = K"V (oK),
and calculate last term using V(R — %Rgab) = 0 applied to NHE.

o Evaluate triple derivative term VV ,Ky) = V4V, V,I' + ... using
[Va, V]Ve = Ry, V@ and NHE again. Introduces extra term p*V,T.

@ After contracting with K, many cancellations occur, resulting in

1
Z!EKg\Q =Vaul... )+ V K...) = p°K°V,I.
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Derivation of tensor identity

@ Proof follows [Dunajski-Lucietti '23]. Write
1
T1Ligl = V(K VK = V* (K'Y, K ) = K"V (oK),
and calculate last term using V(R — %Rgab) = 0 applied to NHE.

o Evaluate triple derivative term VV ,Ky) = V4V, V,I' + ... using
[Va, V]Ve = Ry, V@ and NHE again. Introduces extra term p*V,T.

@ After contracting with K, many cancellations occur, resulting in
i;chP = Vol ) + VaK(...) — 2KV, T
@ Final step: use matter equation to rewrite last term
—p? KVl = —Tp*VoK* + V' (DpVa(p) = 2/V(Tp). O
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Proof of theorem

@ Choose I' such that V,K*® = 0. Integrating the tensor identity over
M shows Lxg =0 and I'p = const.
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Proof of theorem

@ Choose I' such that V,K*® = 0. Integrating the tensor identity over
M shows Lxg =0 and I'p = const.

@ From matter equation we find LxI' = Lxp = 0. In terms of original
variables:

[K,X]=0, Lxtp=0 and LxB=0. O
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Proof of theorem

@ Choose I' such that V,K*® = 0. Integrating the tensor identity over
M shows Lxg =0 and I'p = const.

@ From matter equation we find LxI' = Lxp = 0. In terms of original
variables:

[K,X]=0, Lxtp=0 and LxB=0. O

Let (M, g) be a compact, oriented Riemannian surface admitting a
non-trivial solution (X, ), B) to the four-dimensional Einstein-Maxwell
NHE. Then (M, g, X, %, B) is given by an extremal Kerr-Newman horizon
(possibly with a cosmological constant).
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The quasi-Einstein equation

e Quasi-Einstein equation (QEE): compact Riemannian manifold (M, g)
with a vector field X € X(M) satisfying

1
Rap = — XaXp = V(0 Xp) + Adap-

m
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The quasi-Einstein equation

e Quasi-Einstein equation (QEE): compact Riemannian manifold (M, g)
with a vector field X € X(M) satisfying

1

Rap = — XaXp = V(0 Xp) + Adap-

e The QEE appears in various contexts (extremal horizons, warped
product Einstein manifolds, projective metrizability, Einstein-Weyl
geometries, ...) for different values of m.
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The quasi-Einstein equation

e Quasi-Einstein equation (QEE): compact Riemannian manifold (M, g)
with a vector field X € X(M) satisfying

1

Rap = — XaXp = V(0 Xp) + Adap-

e The QEE appears in various contexts (extremal horizons, warped
product Einstein manifolds, projective metrizability, Einstein-Weyl
geometries, ...) for different values of m.

@ Solutions (partially) classified under various assumptions, e.g.
dX? =0, Vo X% =0 or n =2 with axi-symmetry.
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The quasi-Einstein equation

e Quasi-Einstein equation (QEE): compact Riemannian manifold (M, g)
with a vector field X € X(M) satisfying

1

Rap = — XaXp = V(0 Xp) + Adap-

e The QEE appears in various contexts (extremal horizons, warped
product Einstein manifolds, projective metrizability, Einstein-Weyl
geometries, ...) for different values of m.

@ Solutions (partially) classified under various assumptions, e.g.
dX? =0, Vo X% =0 or n =2 with axi-symmetry.

@ Q: do all solutions to the QEE with non-gradient X on compact M
admit a Killing vector of the form K = 2I'X + VI'?
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Rigidity of quasi-Einstein metrics

e Fixing I' s.t. V,K® =0 and repeating steps for m = 2 [Cochran '24],

4
/ ]CKg|2 volg = —(2 — m)/ RabKaVbF volg.
M m M

Unclear how to proceed.
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Rigidity of quasi-Einstein metrics

e Fixing I' s.t. V,K® =0 and repeating steps for m = 2 [Cochran '24],
2 4 ax7b
/ LKy volg = —(2 — m)/ Ry, K*V°T vol,.
M m M

Unclear how to proceed.

Let (M, g) be a closed n-dimensional Riemannian manifold admitting a
non-gradient vector field X such that the QEE holds with either (i) m > 2
or (ii) m < 2 —n. Then there is a smooth positive function I' such that
K = 2T'X + VT is a Killing vector. Moreover, [K, X] = 0.

—m
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Tensor identity

o QEE in terms of K = %FX + VI

m

Ry = T2

KoKy — =V (o Ky + %vavbr — (VD) (VD) + Ao

412 2r
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Tensor identity

o QEE in terms of K = %FX + VI

m m
KK —
afrd o

Rav = 11

m
V(aKb) + ﬁvava 2

Proposition
For any solution to the QEE with m # 2 the following identity holds

L (VaD) (V3T) + Agap.

v,

1 m—
7L + —r T (VaK®)?2 = Vo (T K) H + VoV,
H
R TN VIP | o g
H =5+ 5AT + j(m — 2)——+ 2(m_Q)vaK + AT,
Ve = FTKbV(“Kb) - K — 1777 (V, K K®
~1 (AF)K — A[BKe.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V, (TX) = 0.

Choose T to be \Il%, so that T K is divergence-free.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V, (TX) = 0.
Choose T to be \Il%, so that T K is divergence-free.

@ Integrating the tensor identity over M,
/ %1 (Lol + —1 (vuk®)?) vol, = 0.
M 4 m — 2 g

For m > 2 integrand is non-negative — Lig = 0.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V, (TX) = 0.
Choose T to be \Il%, so that T K is divergence-free.

@ Integrating the tensor identity over M,

m 1 1
m_q 2 2
/MFQ <4|£Kg| +m_2(VaK“) > V0|g:O.
For m > 2 integrand is non-negative — Lig = 0.

e Using [Lxg|? > 2(V,K?)?, the same result follows for m < 2 — n.
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QEE Killing vector

@ Let U be a smooth positive function satisfying
AV + V, (TX) = 0.
Choose T to be \Il%, so that T K is divergence-free.

@ Integrating the tensor identity over M,

m 1 1
m_q 2 2
J,re (4'%‘/' oo (Val?) ) voly =0
For m > 2 integrand is non-negative — Lig = 0.
e Using [Lxg|? > 2(V,K?)?, the same result follows for m < 2 — n.

o V, K= Va(FmTizK“) =0 implies LxkT' =0 and so [K,X]|=0. [
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Generalized extremal horizon equations

Definition [Kamirski-Lewandowski '24]

A metric g and vector field X on a surface M satisfy the generalized
extremal horizon equation (GEHE) for some f € C*°(M) and ¢ # 0 if

V(aXe) + ¢Xo X+ fgap = 0.
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Generalized extremal horizon equations

Definition [Kamirski-Lewandowski '24]

A metric g and vector field X on a surface M satisfy the generalized
extremal horizon equation (GEHE) for some f € C*°(M) and ¢ # 0 if

V(aXe) + ¢Xo X+ fgap = 0.

e c= —%,f = %R— A: vacuum NHE.
o c= —%,f = %R — A — p?: Einstein-Maxwell NHE.

ec=—1 :%R—/\: QEE.
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

@ [Kamiriski-Lewandowski '24]: proof based on holomorphic vector fields.
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

@ [Kamiriski-Lewandowski '24]: proof based on holomorphic vector fields.

@ Poincaré-Hopf theorem: Let M be a closed manifold and X a vector
field on M having only isolated zeros. The sum of the indices of the
zeros of X equals the Euler characteristic x(M).
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Topological rigidity

Let (g, X) be a solution to the GEHE on a closed, connected and oriented
surface M with X not identically zero. Then M is diffeomorphic to S2.

@ [Kamiriski-Lewandowski '24]: proof based on holomorphic vector fields.

@ Poincaré-Hopf theorem: Let M be a closed manifold and X a vector
field on M having only isolated zeros. The sum of the indices of the
zeros of X equals the Euler characteristic x(M).

@ Recall the index of X at an isolated zero p € M is defined as the
degree of the map X/|X|: 0D — S™!, where D is a coordinate disk
around p s.t. pis the only zero of X in D.
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Proof of theorem: step 1

@ Qutline of proof: show that

@ X has at least one zero.
@ Any zero of X is isolated.

© The index of X at any zero is positive.

This implies x(M) > 0 and hence M = S2.
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Proof of theorem: step 1

@ Qutline of proof: show that

@ X has at least one zero.
@ Any zero of X is isolated.

© The index of X at any zero is positive.

This implies x(M) > 0 and hence M = S2.

@ Step 1: Use the trace of GEHE to express f in terms of X. Then
contract the GEHE twice with X to find [Jezierski '09]

X(l
Ve <\X\2> =

On a closed manifold M this shows X must have zero.
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Proof of theorem: step 2

@ Step 2: Introduce complex coords (z, z) around a zero p € U and
functions H: U - R, P: U — C s.t.

g=2eld2dz, X’ = Pdz + Pdz.
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Proof of theorem: step 2

@ Step 2: Introduce complex coords (z, z) around a zero p € U and
functions H: U - R, P: U — C s.t.

g=2eld2dz, X’ = Pdz + Pdz.

o Define a complex function F locally by 9;F = P. The
(2z)-component of the GEHE gives

Oz (ecpefHP) =0.

Hence p is an isolated zero and not all derivatives of P are zero at p.
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Proof of theorem: step 2

@ Step 2: Introduce complex coords (z, z) around a zero p € U and
functions H: U - R, P: U — C s.t.

g=2eld2dz, X’ = Pdz + Pdz.

o Define a complex function F locally by 9;F = P. The
(2z)-component of the GEHE gives

0 (eCFefHP) =0.
Hence p is an isolated zero and not all derivatives of P are zero at p.

o Note: if M = 52 we can define F globally by 9F = (X*)(®1). The
computation above then shows that V = e¢f' X(1:9) is a holomorphic
vector field.
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Proof of theorem: step 3

@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.
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@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.

o Prolong the GEHE: define Q by dX” = 2Qe, so that

VoXp+cXo Xy = _fgab + Qegp.
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@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.

o Prolong the GEHE: define Q by dX” = 2Qe, so that

VoXp+cXo Xy = _fgab + Qegp.

o We find
det(9,X")|, = f(p)* + Qp)*.

Hence det(0,X") > 0 at p unless X, f, 2 vanish simultaneously.
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Proof of theorem: step 3

@ Step 3: motivated by [Chrusciel-Szybka-Tod '17]. Key ingredient

@ Lemma [Milnor '65]: Let p be a zero of a vector field X. If (in some
coordinates) det(d,X") > 0 at p, then then the zero is isolated and
of index 1.

o Prolong the GEHE: define Q by dX” = 2Qe, so that

VoXp+cXo Xy = _fgab + Qegp.

o We find
det(9,X")|, = f(p)* + Qp)*.

Hence det(0,X") > 0 at p unless X, f, 2 vanish simultaneously.

@ In this case: show det(9,X") has a strict minimum at p.
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Minimum of det(d,X")

o In the degenerate case there is k > 1 s.t. not all (kK + 1)-th order
derivatives of X vanish at p.
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Minimum of det(d,X")

o In the degenerate case there is k > 1 s.t. not all (kK + 1)-th order
derivatives of X vanish at p.

@ Choose coords (z!,22) s.t. p = (0,0). Modulo O(|z|***1) terms

det(0,X") = s [(Favnoan )2 2)? + (@ (P2 22
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Minimum of det(d,X")

o In the degenerate case there is k > 1 s.t. not all (kK + 1)-th order
derivatives of X vanish at p.

@ Choose coords (z!,22) s.t. p = (0,0). Modulo O(|z|***1) terms

det(0,X") = s [(fanan @) ) 4 (@ ()i )]
o Differentiating the GEHE gives

— v .
Q,Ll...bk = lef,pLz...Lk and 9“ f,/,LVLl...Lk_Q =0 atp.
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Minimum of det(d,X")

o In the degenerate case there is k > 1 s.t. not all (kK + 1)-th order
derivatives of X vanish at p.

@ Choose coords (z!,22) s.t. p = (0,0). Modulo O(|z|***1) terms

det(0,X") = s [(Fura @)z - ) + (Quy (D) - a+)?]
o Differentiating the GEHE gives
Q,Ll---bk = 6L1Pf7pb2---bk and guuf,MVLI---Lk—Q =0 atp.

@ Hence

C = min {(f,Ll...Lk (p)v't... v”“)Q + (.0 ()t .’L)Lk)2} >0,
veS!

so det(9,X") > (k%)20|x\2k + O(|z|?**1) has a strict minimum.  [J
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o Main results

e 4D Einstein-Maxwell Theory: every non-trivial extremal horizon
cross-section admits a Killing vector and hence is given by the
extremal KN family.

o Quasi-Einstein equation: every compact non-gradient solution to
the QEE with m > 2 or m < 2 — n admits a Killing vector
preserving X.

o Generalized extremal horizon equation: every non-trivial solution
is (up to a double cover) on the two-sphere S2.
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o Main results

e 4D Einstein-Maxwell Theory: every non-trivial extremal horizon
cross-section admits a Killing vector and hence is given by the
extremal KN family.

o Quasi-Einstein equation: every compact non-gradient solution to
the QEE with m > 2 or m < 2 — n admits a Killing vector
preserving X.

o Generalized extremal horizon equation: every non-trivial solution
is (up to a double cover) on the two-sphere S2.

e Open problems
o Killing vector for the QEE with m € (2 — n,2)?

o Extension to higher dimensions / other theories.
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Thank you
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