
1/19

Booting Linux on the ACL2 x86-ISA Model

Yahya Sohail and Warren A. Hunt, Jr.

Original Authors: Shilpi Goel, W. Hunt, Jr., Matt Kaufmann
UT Contributors: Cuong Chau, J Strother Moore

Additional UT Contributors: Soumava Ghoush, Keshav Kini,
Robert Krug, Ben Selfridge, Rob Sumners, Nathan Wetzler
Centaur Technology Contributors: Anna Slobodova, Jared

Davis, Sol Swords
Kestrel Contributor: Alessandro Coglio

Sponsors: Centaur Technology, DARPA, Intel, NSF

Computer Science Department
The University of Texas; Austin, TX (USA)

https://yahyasohail.com, https://cs.utexas.edu/∼hunt

October 10, 2024

2/19

Table of Contents

The ACL2 x86-ISA Specification Project Goals

History

x86-ISA Machine State Model

Booting Linux

Debugging our x86-ISA Model

TLB – Improving Emulation Performance

Linux, Programs and their Data

Future Work

Conclusion

3/19

The ACL2 x86-ISA Specification Project Goals

What is an ISA? Why is the formal definition of ISA valuable?

▶ It is the build-to specification for x86 implementations

▶ It is the compile-to specification for x86 programs

▶ It provides the contract between the software and hardware

▶ It documents the fundamental capabilities and limitations

▶ It provides the semantics for Linux, Windows, Excel, Emacs, ...

4/19

Abridged History

▶ In ∼2004, Hunt modeled the y86 ISA used in Bryant and
O’Hallaron’s architecture textbook

▶ Around 2009, Hunt created a simple x86-ISA model

▶ In 2012, Hunt and Kaufmann documented a more complete
ACL2 x86-ISA model (UTCS Technical Report)

▶ In ∼2015, Goel’s PhD work included adding x86-ISA
instructions, supervisor mode, and memory management

▶ In ∼2017, Cuong Chau added floating-point support (SSE 1
and SSE 2 instructions)

▶ Later, Alessandro Coglio [Kestrel] and Goel added support for
32-bit instructions

▶ In 2023, Sohail added a timer, interrupts, console I/O, etc. so
Linux could be booted, and run user programs

5/19

Serious Questions
▶ Have you ever written a C-language program?

▶ Have you ever compiled a C-language program?

▶ Have you ever run a C-language program?

Boolean ISA
Specification

Natural, Integer, FP, etc.
Interpretations

MA State

MA Specification

ISA State

Projection

Memory
Regs

Flags

PC

Memory
Regs

Flags

PC

6/19

x86-ISA Machine State Model

3-6 Vol. 1

BASIC EXECUTION ENVIRONMENT

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel
64 architecture. Intel 64 architecture introduces a set of changes in physical and linear address space; these
are described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers Floating-Point

Data Registers

Eight 64-bit
Registers MMX Registers

XMM Registers
Sixteen 128-bit

Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Four 128-bit Registers

Bounds Registers

BNDCFGU BNDSTATUS

YMM Registers
Sixteen 256-bit

Registers

YMM Registers

Page

Tables Diagram (copied from Intel’s x86
Software Programmer’s manual)
summarizes the x86-ISA state.

▶ Memory contains most state

▶ Page tables memory resident

Each memory reference requires
address translation

▶ Local/Global Descriptors

▶ Segment-register mapping

▶ 4-level address translation

7/19

Booting Linux

To boot Linux on top of our x86-ISA model:

▶ We extended our x86-ISA model with exceptions and
interrupts

▶ Linux requires a timer and interrupt controller – which is not
strictly part of the x86 ISA.

▶ We added a Linux console device

Contemporary BIOS/UEFIs include 16-bit real-mode code, which is
how an x86 processor is configured when powered on.

We wrote a bootloader function in ACL2 that initializes our
x86-ISA model state so Linux can boot – skipping the typical
BIOS/UEFI and bootloader code.1

1 Boot Linux.

8/19

Interrupts/Exceptions; Timer and Interrupt Controller

Interrupt Handling

▶ Prior to 2023, exceptions stopped our x86-ISA emulator
▶ Now, after each instruction

▶ We check for a pending interrupt/exception
▶ If observed, control is passed to the exception handler

Software Timer

▶ We removed Linux dependence on the Programmable Interval
Timer (PIT) and Programmable Interrupt Controller (PIC)

▶ Our timer model posts an interrupt after some number of
instructions have executed

▶ We wrote our own Linux device driver for interrupts

9/19

TTY (Console) I/O; Loading Linux into RAM

When emulating our x86-ISA model, we use our ACL2 TTY
model:

▶ to connect a terminal to/from a TCP socket

▶ this allows us to provide console I/O for our x86-ISA model

We load a Linux OS binary into our x86-ISA RAM:

▶ we initialize the x86-ISA emulated registers,

▶ we write the initial ramdisk to physical memory, and

▶ we initialize the zero-page — a structure used to pass
information from the bootloader to Linux.

10/19

Debugging our x86-ISA Model

▶ In principle, we’ve discussed everything necessary to boot
Linux

▶ But, our x86-ISA model had several buggy instructions

▶ Tracking down flawed instructions was hard because the
(often subtle) adverse effects may not manifest themselves
until much later

▶ It’s a bit like tracking down memory-pointer corruption bugs
in C/C++ code, but harder...

11/19

Bug-Hunting Solution: Co-simulation

With a known good processor, we start the model and the
processor in the same state and step them each one instruction at
a time, comparing states, until you find where they differ.

▶ However, this approach is complicated by the fact that the
x86 ISA doesn’t fully specify all allowed behaviors

▶ That is, there can be differences in behavior between two
different ISA-conforming implementations

▶ But our approach of comparing our model to what a real x86
processor does is how we debug our x86-ISA model.2

2 Let’s see how the boot is proceeding...

12/19

Our Co-Simulation Environment

▶ For our assumed-good x86 implementation, we use Linux’s
KVM APIs to create a hardware accelerated virtual machine

▶ This approach uses the x86 virtualization extensions, so most
instructions are executed directly by a host, x86 processor

▶ We wrote Lisp code to dump the state of our x86-ISA model

▶ We step the VM

▶ We step our x86 model (the number of steps the KVM model
advanced), and compare our x86 model state with what the
KVM model produced.

▶ If they differ, we may have found a bug

13/19

Larger Traces

▶ Suppose we run the model for n instructions and then observe
the effects of a bug (for example, a kernel panic)

▶ We can start our x86 model again and execute n
2 instructions,

and then dump our model’s state

▶ We can then load the that state into a VM and let the VM run

▶ If the VM also exhibits the buggy behavior, we conclude the
bug was in the first n

2 instructions that were run on the model

▶ Otherwise, the bug will be found in the latter n
2 instructions

▶ Thus, we perform binary search to find the buggy instruction

▶ Once isolated, we fix the bug, and start all over again...

14/19

TLB – Improving Emulation Performance

After booting Linux successfully, we wanted more performance, so
we implemented a TLB (translation look-aside buffer) cache.

▶ Originally, we walked the page tables for every translation
(and an n-byte access requires n translations)

▶ Processors cache translation information in a TLB

▶ We implemented a TLB conforming to the x86 documentation

Our TLB model is an ACL2 hashtable mapping:

▶ control register bits that effect address translation

▶ the access type (i.e. read, write, or execute), and

▶ the virtual page number

to a physical page number.

15/19

Linux, Programs and their Data

3-6 Vol. 1

BASIC EXECUTION ENVIRONMENT

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel
64 architecture. Intel 64 architecture introduces a set of changes in physical and linear address space; these
are described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers Floating-Point

Data Registers

Eight 64-bit
Registers MMX Registers

XMM Registers
Sixteen 128-bit

Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Four 128-bit Registers

Bounds Registers

BNDCFGU BNDSTATUS

YMM Registers
Sixteen 256-bit

Registers

YMM Registers

Linux,

Processes We have verified binary for:

▶ a wc (word count program)

▶ a zero-copy subroutine

The size of these proofs is sub-
stantial

▶ proof statements include the
x86-ISA model,

▶ the specialization of the
memory content, and

▶ we must process
megabyte-sized proof terms.

16/19

Characteristics of our ACL2 x86-ISA Model

Model pieces:

▶ ∼ 165000 lines of code

▶ ∼ 48000 lines of documentation

▶ ∼ 3000 function definitions, ∼ 1100 lemmas
▶ Time to certify our x86-ISA model (on Intel i7-10700k laptop)

▶ ∼ 1.8 hours to certify model with all its dependencies
▶ ∼ 1.2 hours to certify model excluding dependencies
▶ Both times include lemmas to reason about the behavior of the

model and some verified x86-binary programs3

x86-ISA emulation performance

▶ Boots Linux in ∼10 minutes

▶ Emulates ∼1 million instructions per second

3 Let’s try it out!

17/19

Availability of the ACL2 x86-ISA Model

The x86ISA model is available as part of the ACL2 community
books.

The community books can be obtained along with the ACL2 source
from https://github.com/acl2/acl2. The model can be found
in the books/projects/x86isa directory of the ACL2 source tree.

The model is also documented in ACL2’s documentation system.
You can find the documentation at https://www.cs.utexas.
edu/~moore/acl2/manuals/latest/?topic=ACL2____X86ISA.

https://github.com/acl2/acl2
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=ACL2____X86ISA
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=ACL2____X86ISA

18/19

Future Work

Having a x86-ISA semantics enable:

▶ Boot other operating systems (e.g., FreeBSD, Windows)

▶ Verify operating-system routines (e.g., TCP/IP stack)

▶ Verify the correctness of user programs

▶ Model peripherals to support unmodified operating systems

Many programs JIT x86-ISA code; these binaries can be validated

The early, 64-bit x86 patents have expired. Maybe some group can
produce a simple, verified x86 implementation.

19/19

Conclusion

The value of our x86-ISA specification includes:

▶ It is the build-to specification for x86 implementations

▶ It is the compile-to specification for x86 programs

▶ It provides the contract between the software and hardware

▶ It documents the fundamental capabilities and limitations

▶ It provides the semantics for Linux, Windows, Excel, Emacs, ...

x86-ISA instructions can be 15 bytes long – allowing (a max of)
1329227995784915872903807060280344576 instructions.

This contract is executed 109 times/second by 109 of processors.

Our social, financial, engineering, transportation, and government
systems depend on this contract; we need mathematical precision
to confirm the veracity of our hardware implementations and the
correct operation of our x86-ISA binary programs.

	The ACL2 x86-ISA Specification Project Goals
	History
	x86-ISA Machine State Model
	Booting Linux
	Debugging our x86-ISA Model
	TLB – Improving Emulation Performance
	Linux, Programs and their Data
	Future Work
	Conclusion

