Booting Linux on the ACL2 x86-ISA Model

Yahya Sohail and Warren A. Hunt, Jr.

Original Authors: Shilpi Goel, W. Hunt, Jr., Matt Kaufmann
UT Contributors: Cuong Chau, J Strother Moore
Additional UT Contributors: Soumava Ghoush, Keshav Kini,
Robert Krug, Ben Selfridge, Rob Sumners, Nathan Wetzler
Centaur Technology Contributors: Anna Slobodova, Jared
Davis, Sol Swords
Kestrel Contributor: Alessandro Coglio
Sponsors: Centaur Technology, DARPA, Intel, NSF

Computer Science Department
The University of Texas; Austin, TX (USA)

https://yahyasohail.com, https://cs.utexas.edu/~hunt

October 10, 2024

Table of Contents

The ACL2 x86-ISA Specification Project Goals
History

x86-ISA Machine State Model

Booting Linux

Debugging our x86-ISA Model

TLB — Improving Emulation Performance
Linux, Programs and their Data

Future Work

Conclusion

The ACL2 x86-ISA Specification Project Goals

What is an ISA? Why is the formal definition of ISA valuable?

» It is the build-to specification for x86 implementations
» It is the compile-to specification for x86 programs
> It provides the contract between the software and hardware

» It documents the fundamental capabilities and limitations

» |t provides the semantics for Linux, Windows, Excel, Emacs, ...

Abridged History

» In ~2004, Hunt modeled the y86 ISA used in Bryant and
O'Hallaron’s architecture textbook

» Around 2009, Hunt created a simple x86-ISA model

» In 2012, Hunt and Kaufmann documented a more complete
ACL2 x86-ISA model (UTCS Technical Report)

» In ~2015, Goel's PhD work included adding x86-ISA
instructions, supervisor mode, and memory management

» In ~2017, Cuong Chau added floating-point support (SSE 1
and SSE 2 instructions)

» Later, Alessandro Coglio [Kestrel] and Goel added support for
32-bit instructions

» In 2023, Sohail added a timer, interrupts, console 1/0, etc. so
Linux could be booted, and run user programs

Serious Questions

» Have you ever written a C-language program?

» Have you ever compiled a C-language program?

» Have you ever run a C-language program?

ISA State

PC

Regs

Memory

Flags

Projection

MA State

Natural, Integer, FP, etc.
Interpretations

Boolean ISA
Specification

Memory

Regs

Flags

x86-1SA Machine State Model

Basic Program Execution Registers Address Space

2764-1
General-Purpose Registers P
o , age
Registers | Segment Registers

RFLAGS Register Tables
RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit

egitars Floating-Point

Data Registers

Control Register

Status Register o
Tag Register

[] Opcode Register (11-bits)
FPU Instruction Pointer Register
FPU Data (Operand) Pointer Register

MMX Registers Bounds Registers

Eight 64-bit Four 128-bit Registers
Registers MMX Registers

BNDCFGU BNDSTATUS

XMM Registers

Sixteen 128-bit
Registers. XMM Registers

MXCSR Register
YMM Registers

Registers

Sixteen 256-bit
YMM Registers

Diagram (copied from Intel's x86
Software Programmer's manual)
summarizes the x86-1SA state.

» Memory contains most state

» Page tables memory resident

Each memory reference requires
address translation

» Local/Global Descriptors
» Segment-register mapping

» 4-level address translation

Booting Linux

To boot Linux on top of our x86-ISA model:

> We extended our x86-ISA model with exceptions and
interrupts

» Linux requires a timer and interrupt controller — which is not
strictly part of the x86 ISA.

» We added a Linux console device

Contemporary BIOS/UEFIs include 16-bit real-mode code, which is
how an x86 processor is configured when powered on.

We wrote a bootloader function in ACL2 that initializes our
x86-ISA model state so Linux can boot — skipping the typical
BIOS/UEFI and bootloader code.?

! Boot Linux.

Interrupts/Exceptions; Timer and Interrupt Controller

Interrupt Handling

» Prior to 2023, exceptions stopped our x86-ISA emulator
» Now, after each instruction

» We check for a pending interrupt/exception
P If observed, control is passed to the exception handler

Software Timer
» We removed Linux dependence on the Programmable Interval
Timer (PIT) and Programmable Interrupt Controller (PIC)

» Our timer model posts an interrupt after some number of
instructions have executed

> We wrote our own Linux device driver for interrupts

TTY (Console) 1/0; Loading Linux into RAM

When emulating our x86-ISA model, we use our ACL2 TTY
model:

» to connect a terminal to/from a TCP socket

» this allows us to provide console I/0 for our x86-ISA model

We load a Linux OS binary into our x86-1SA RAM:
» we initialize the x86-ISA emulated registers,
> we write the initial ramdisk to physical memory, and

» we initialize the zero-page — a structure used to pass
information from the bootloader to Linux.

Debugging our x86-ISA Model

» In principle, we've discussed everything necessary to boot
Linux

> But, our x86-ISA model had several buggy instructions

» Tracking down flawed instructions was hard because the

(often subtle) adverse effects may not manifest themselves
until much later

P It's a bit like tracking down memory-pointer corruption bugs
in C/C4++ code, but harder...

Bug-Hunting Solution: Co-simulation

With a known good processor, we start the model and the
processor in the same state and step them each one instruction at
a time, comparing states, until you find where they differ.

» However, this approach is complicated by the fact that the
x86 ISA doesn't fully specify all allowed behaviors

» That is, there can be differences in behavior between two
different ISA-conforming implementations

» But our approach of comparing our model to what a real x86
processor does is how we debug our x86-ISA model.?

2 Let’s see how the boot is proceeding...

Our Co-Simulation Environment

v

For our assumed-good x86 implementation, we use Linux’s
KVM APIs to create a hardware accelerated virtual machine

This approach uses the x86 virtualization extensions, so most
instructions are executed directly by a host, x86 processor

We wrote Lisp code to dump the state of our x86-ISA model
We step the VM

We step our x86 model (the number of steps the KVM model
advanced), and compare our x86 model state with what the
KVM model produced.

If they differ, we may have found a bug

Larger Traces

v

Suppose we run the model for n instructions and then observe
the effects of a bug (for example, a kernel panic)

We can start our x86 model again and execute 7 instructions,
and then dump our model’s state

We can then load the that state into a VM and let the VM run

If the VM also exhibits the buggy behavior, we conclude the
bug was in the first 5 instructions that were run on the model

Otherwise, the bug will be found in the latter g instructions
Thus, we perform binary search to find the buggy instruction
Once isolated, we fix the bug, and start all over again...

TLB — Improving Emulation Performance

After booting Linux successfully, we wanted more performance, so
we implemented a TLB (translation look-aside buffer) cache.

» Originally, we walked the page tables for every translation
(and an n-byte access requires n translations)

» Processors cache translation information in a TLB
» We implemented a TLB conforming to the x86 documentation

Our TLB model is an ACL2 hashtable mapping:
» control register bits that effect address translation
> the access type (i.e. read, write, or execute), and
» the virtual page number

to a physical page number.

Linux, Programs and their Data

Basic Program Execution Registers Address Space

2%64-1
General-Purpose Registers

on Linux,

ReLAGS Regiter Processes We have verified binary for:
RIP (Instruction Pointer Register)
Fru Regsters > a wc (word count program)
’ . » a zero-copy subroutine
Control Register
Status Register o
Tag Register
B e The size of these proofs is sub-
FPU Data (Operand) Pointer Register stan t| a |

MMX Registers Bounds Registers

m i » proof statements include the
sy I

[y | [Cowosrams] x86-1SA model,

» the specialization of the
- L memory content, and

XMM Registers

Sixteen 128-bit
Registers

XMM Registers

YMM Registers

» we must process
megabyte-sized proof terms.

Registers

Sixteen 256-bit
YMM Registers

Characteristics of our ACL2 x86-1SA Model

Model pieces:
» ~ 165000 lines of code
» ~ 48000 lines of documentation
» ~ 3000 function definitions, ~ 1100 lemmas

> Time to certify our x86-ISA model (on Intel i7-10700k laptop)
» ~ 1.8 hours to certify model with all its dependencies
» ~ 1.2 hours to certify model excluding dependencies
» Both times include lemmas to reason about the behavior of the
model and some verified x86-binary programs®
x86-ISA emulation performance
» Boots Linux in ~10 minutes

» Emulates ~1 million instructions per second

3 Let’s try it out!

Availability of the ACL2 x86-ISA Model

The x86ISA model is available as part of the ACL2 community
books.

The community books can be obtained along with the ACL2 source
from https://github.com/acl2/acl2. The model can be found
in the books/projects/x86isa directory of the ACL2 source tree.

The model is also documented in ACL2's documentation system.
You can find the documentation at https://www.cs.utexas.
edu/~moore/acl2/manuals/latest/?topic=ACL2 X86ISA.

https://github.com/acl2/acl2
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=ACL2____X86ISA
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=ACL2____X86ISA

Future Work

Having a x86-ISA semantics enable:

» Boot other operating systems (e.g., FreeBSD, Windows)

» Verify operating-system routines (e.g., TCP/IP stack)

» Verify the correctness of user programs

» Model peripherals to support unmodified operating systems
Many programs JIT x86-ISA code; these binaries can be validated

The early, 64-bit x86 patents have expired. Maybe some group can
produce a simple, verified x86 implementation.

Conclusion

The value of our x86-ISA specification includes:
» It is the build-to specification for x86 implementations
» [t is the compile-to specification for x86 programs
» It provides the contract between the software and hardware
» It documents the fundamental capabilities and limitations
» It provides the semantics for Linux, Windows, Excel, Emacs, ...

x86-ISA instructions can be 15 bytes long — allowing (a max of)
1329227995784915872903807060280344576 instructions.

This contract is executed 10° times/second by 10° of processors.

Our social, financial, engineering, transportation, and government
systems depend on this contract; we need mathematical precision
to confirm the veracity of our hardware implementations and the
correct operation of our x86-ISA binary programs.

	The ACL2 x86-ISA Specification Project Goals
	History
	x86-ISA Machine State Model
	Booting Linux
	Debugging our x86-ISA Model
	TLB – Improving Emulation Performance
	Linux, Programs and their Data
	Future Work
	Conclusion

