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Do we understand what a debris disk is?

... but do we understand debris disks?

disc, disk

/dIsk/

• noun a thin circular plate of any material

I think so:
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Fragmentation is ubiquitous
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From dust 

to pl/simals

Planetary

system 

evolution

Growth of 

embryos

Gas planet 

formation

Terrestrial 

planet 

formation

Time                    0.1                      1                       10                     100      Myr

Growth is accompanied by fragmentation

Fragmentation dominates



That’s all about planetary systems
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Basic physics
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Stellar  (photo)gravity          Collisional cascade               Other forces               

planetesimals...   boulders  ... dust

Planetary gravity

P-R drag

Gas drag

Lorentz force

…



Modeling methods

N-body simulations

 Inflated spheres”, local PiaB,  “collisional grooming”, ...

Accurate dynamics 

Inaccurate collisions

Statistical codes

 Multiannulus PiaB, kinetics in orbital elements, …

Accurate collisions

Simplified dynamics

Hybrid methods

 Combinations of both above, “superparticles”,...

Share (dis)advantages of two previous methods

Main challenge: how to combine accurate dynamics with accurate collisions?
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Talk by  Marc Kuchner
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Initial 

planetesimal

belt

ACE (Analysis of Collisional Evolution)

Features:

- statistical code in an (m,q,e)-mesh

- accurate photogravitational dynamics

- collisions (mergers, cratering, disruption)

- diffusion by P-R, stellar wind, gas drag

- distributed parallel computing

Debris disk

at subsequent

time instants

Krivov & Sremčević (2003-2004), Löhne (2005-2009)
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A  typical debris disk
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Planetesimal belt

Dust disk

β>1

β=0.5
β=0.3β=0.1

β=0



Disk appearance at different wavelengths
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Thébault & Augereau, AAp 472, 169 (2007)
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Collision-dominated  vs transport-dominated disks

Disks with low optical depth,

especially around late-type stars

(here: our Zodi)

Krivov et al., AAp 362, 1127 (2000)

Workshop on Dynamics of Outer Planetary Systems        Edinburgh, 10/11/2009

Leinert & Grün, In Phys. Inner Heliosphere (1990)

Dustier

disks 

(here: β Pic)

All  debris disks detected so far are collision-dominated (Wyatt, ApJ 598, 1007-1012, 2005), 

but we should be able to enter the world of transport-dominated disks soon



Collision-dominated disks: scaling rules
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Löhne, Krivov, & Rodmann, ApJ 673, 1123-1137 (2008)

Wyatt et al., ApJ 658, 569-583 (2007)

F (xM0 , r, t) =  x F(M0, r, xt)

F=any quantity proportional to amount of material  in any size regime

Exact rule for  collision-dominated disks:

F (M0 , yr, t) ≈ F(M0, r, y-4.3t)

F=any quantity proportional to amount of material  in any size regime

Approximate rule for disks with a fixed relative width and height:

F (M0 , r, zt) ≈ z-xF(M0, r, t),   x~0.3…0.4

F=any quantity proportional to amount of  “dust” (objects in strength regime)

Approximate rule for collision-dominated disks:



Collision-dominated disks: size distribution

16Workshop on Dynamics of Outer Planetary Systems        Edinburgh, 10/11/2009

Animation: Torsten Löhne



Collision-dominated disks: size distribution
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Animation: Torsten Löhne



Collision-dominated disks: size distribution
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Animation: Torsten Löhne

Blowout limit

Jump at blowout radius 

Strength:  ~Tcoll/Tdyn

Knee at ~100m radius

(minimum  of QD*)



Collision-dominated disks: radial distribution
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Animation: Torsten Löhne
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Collision-dominated disks: radial distribution
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Animation: Torsten Löhne
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Collision-dominated disks: radial distribution
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Animation: Torsten Löhne
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Σ~ r -1.5 (SB~r -3.5)

Krivov, Löhne, & Sremčević,  AAp 455, 509-519 (2006)

Strubbe & Chiang, ApJ 648, 652-665 (2006)

Talk by Eugene Chiang



Transport-dominated disks: size distribution
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Blowout limit

Size distribution flattens 

Cross section is now 

dominated by larger grains 

Vitense, Krivov, & Löhne (in prep.)

Edgeworth-Kuiper belt  dust  disk 



Transport-dominated disks: radial distribution
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Vitense, Krivov, & Löhne (in prep.)

Σ~ r -1.5 (SB~r -3.5)

Σ~ r 0 (SB~r -2)

Edgeworth-Kuiper belt  dust  disk 

Σ~ r -2.5 (SB~r -4.5)

Strubbe & Chiang, ApJ 648, 652-665 (2006)
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Two approaches to data analysis

Traditional approach 

?

Collisional approach
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Krivov, Müller, Löhne, & Mutschke, ApJ 687 (2008)
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1984
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Aumann et al., ApJ 278, L23-L27 (1984)



The Vega disk: huge and short-lived?

Su et al., ApJ (2005); Marsh et al., ApJ (2006)

Sub-mm observations: 

a clumpy ring at ~100 AU

Spitzer/MIPS mid- to far-IR: 

an extended disk ~800 AU

Fitted SED & profiles with

1… 50 μm  & ~200 μm grains

• Blowout ~ 8…50 μm  (if porous)

• SB~r -3...4    looked like  blowout

=>  extended disk = “dust wind”

Consequence: 

Huge mass loss ~3 Mjup

Recent major collision?
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The Vega disk: steady-state, naturally

• First-guess model

• “Collisional age”

• Stellar luminosity

• Location of belt

• Extension of belt

• Dynam. excitation

• Dust composition

• Cratering yes/no

• QD
*  (strong/weak)

• Fragment distrib

• PR effect yes/no
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Müller, Löhne, & Krivov, ApJ (submitted)

Poster  by Torsten Löhne
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Müller, Löhne, & Krivov, ApJ (submitted)

Poster  by Torsten Löhne



The Vega disk: steady-state, naturally

Summary of the steady-state scenario

• Collisional cascade probably ignited early in the system’s history

• Narrow planetesimal ring at ~80…120 AU

Extended dust disk up to ~500 AU or more (small grains in ell orbits) 

• Dynamical excitation probably ~0.1…0.3, origin unconstrained

• Total disk mass ~10 Mearth (in bodies with s<100 km)

• Total mass loss ~2…3 Mearth

• Consistent with reduced stellar luminosity

• Cratering collisions mandatory
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Müller, Löhne, & Krivov, ApJ (submitted)

Poster  by Torsten Löhne



Extended disks vs narrow disks
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Kalas et al., Science 322, 1345 (2008)

Extended disks:

• Vega        

• β Pic

• HR8799                          
(Su et al., ApJ , in press)

Narrow disks:

• Fomalhaut
(Stapelfeldt et al., ApJSS 154, 458-462, 2004)

• β Leo                                                
(Stock et al., in prep.)

Yesterday’s discussion



Radially thick disks and dynamically cold disks
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Thébault & Wu, AAp 481, 713-724 (2008)
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Planets as a reason for inner gaps in debris disks
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Kalas et al.,
Science

322, 1345
(2008)

Resolved disks all show 

inner gaps

SEDs of unresolved disks

imply inner gaps, too

(lack of warm emission)

Planets are expected  in 

the gap (e.g. Quillen, MNRAS 

377,  1287-1294, 2007), and 

some were found (Fom,  

HR8799)

Marois et al.,
Science

322, 1348
(2008)

Reidemeister et al.,
AAp 503, 247

(2009)

Talk by Paul Kalas,

yesterday’s discussions



Secular stirring by planets vs self-stirring

Mustill & Wyatt, MNRAS (in press)
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Secular stirring by a planet

with a=5 AU, e=0.1 

Self-stirring :

time to form Pluto-sized bodies

in an ~xm x MMSN disk
(Kenyon & Bromley,

ApJS 179, 451, 2008)

Talk by  Alex Mustill



Resonant stirring and clumps

Marsh et al., ApJ 646, L77-L80 (2006)
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Vega

Greaves et al., ApJ 619, L187-L190 (2005)

ε Eri

Interpretation: a planet migrating outward trapped planetesimals in resonances

Wyatt, ApJ 598, 1321-1340 (2003)

Talk byJane Greaves,

yesterday’s discussions

Liou & Zook, AJ 118, 580 (1999)

Moro-Martín & Malhotra, AJ 124, 2305 (2002)

EKB and its dust



Resonant stirring and clumps

Workshop on Dynamics of Outer Planetary Systems        Edinburgh, 10/11/2009 40

Wyatt, ApJ 639, 1153-1165 (2003) Queck et al., Cel.Mech. 99, 169-196 (2007)

Collisional

velocities

Collisional

rates

in the clumps:

substantially higher

in the entire belt:

only slightly higher
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Intrinsic stochasticity, major breakups, avalanches
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• A spiral-ilke pattern for  ~1000 yrs

• Avalanches possible for dustiest disks

Grigorieva,Thébault, & Artymowicz,

AAp 461, 537-549 (2007)

Major collisions are rare

Their effect is just a short-

lasting pertubation of a 

steady-state evolution



Planetary shake-downs
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Booth et al., MNRAS 399, 385-398 (2009)

• Modeled the solar system debris disk in the Nice model

• A pre-LHB solar system „s debris disk would be among the brightest sources

• A post-LHB  disk is far below the detection limits

Apart from a short-lasting 

rise  of warm emission,  

an  LHB-like event is 

effectively a transition 

from one steady state        

to another

Talk by Mark Booth
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Statistics of debris disks: a long-term decay

Moór et al. ApJ 644, 525-542 (2006)

• Dust luminosity decays with system‟s age, albeit with a large scatter

• Reason: collisional depletion of a planetesimal belt

t
-1

t
-0.5

t
-2
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Steady-state models

Dominik & Decin, AAp 598, 626-635 (2003)

Equal-sized planetesimals “feed” dust

Dust has a single power-law size distribution
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Steady-state models

Dominik & Decin, AAp 598, 626-635 (2003)

• For collision-dominated disks,

total disk mass ~ dust mass ~ t -1

• For  transport-dominated disks,

total disk mass ~ dust mass ~ t -2
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Steady-state models

QD* assumed to be a single power-law 

Collisional equilibrium assumed at all sizes                        

Wyatt et al., ApJ 658, 569-583 (2007)
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Steady-state models

• For any given age, there is a maximum possible amount of dust

• Disk evolution depends on r, e, I, Dc

Wyatt et al., ApJ 658, 569-583 (2007)
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Non-steady-state models

Strength-gravity transition included

Large planetesimals are not in collisional equilibrium

qp

qg

qs
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Löhne, Krivov, & Rodmann, ApJ 673, 1123-1137 (2008)

Benz & Asphaug, Icarus 142, 5-20 (1999)
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Non-steady-state models

The total disk 

mass and the 

dust mass follow 

different laws

Steady-state

models
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Non-steady-state models

Löhne, Krivov, & Rodmann, ApJ 673, 1123-1137 (2008)
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Thin lines: steady-state models

Thick lines:  non-steady-state models



Non-steady-state models

• The dust mass decays as ~t x

• Index x depends on the “primordial” size distribution of  planetesimals

•Typical values: x ~ -0.3...-0.4 and not  -1
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Löhne, Krivov, & Rodmann, ApJ 673, 1123-1137 (2008)



Synthetic populations vs observations
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Löhne et al.

(in prep.)

Min radius, AU 5 5 5

Max radius, AU 180 140 130

Min mass, Mearth 0.03 0.03 0.03

Max mass, Mearth 25 250 250

Largest body, km 25 150 300
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Summary
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• Debris disks consist  of solids from planetesimals to dust.          
All solids are subject to stellar gravity and collisions.                   
At  dust sizes, also radiation pressure is important

• Steady-state evolution of debris disks is well understood,        
and is consistent with many debris disks currently observed

• Short-term evolution may be determined by one-time events 
(major breakups, planetary shake-downs, …) that may interrupt 
or re-shape steady-state evolution

• Long-term evolution is determined by collisional equilibrium at 
smaller sizes (<10…100km) and a lack thereof at larger sizes

• Debris disks can (and should!)  be used to constrain      
properties of  planetesimals and their accretion history

• Debris disks can serve as tracers of planets and place 
constraints on their formation and migration history


